
GinSing Software
Reference Guide

version 4.0

copyright 2012 ginsingsound.com

Table of Contents
overview...6

purpose... 6
what is the GinSing library?..6
software models...6
code integration...6
starting up and shutting down..7
mode access..7
synth mode punch-through.. 8
sample code..8

functional modes...9
preset mode..9
poly mode.. 9
voice mode... 9
synth mode...9

additional interfaces..11
master interface... 11
constants and definitions...11

base class functions...12

GinSing.begin...13
GinSing.end...14
GinSing.reset..15
GinSing.isReady...16
GinSing.getVersion... 17
GinSing.getPoly... 18
GinSing.getVoice...19
GinSing.getPreset..20
GinSing.getSynth...21
GinSing.getMaster.. 22
GinSing.sendCommand..23
GinSing.writeRegister..24
GinSing.readRegister..25

preset mode functions..26

GinSingPreset.begin..27

GinSingPreset.preview...28
GinSingPreset.load... 29
GinSingPreset.trigger.. 30
GinSingPreset.release...31
GinSingPreset.setAmplitude.. 32

poly mode functions..33

GinSingPoly.begin...34
GinSingPoly.preview...35
GinSingPoly.trigger... 36
GinSingPoly.release..37
GinSingPoly.setNote..38
GinSingPoly.setWaveform...39
GinSingPoly.setFreqDist...40
GinSingPoly.setDutyCycle...41
GinSingPoly.setEnvelope..42

voice mode functions... 43

GinSingVoice.begin...44
GinSingVoice.preview..45
GinSingVoice.speak..46
GinSingVoice.getMillis...47
GinSingVoice.setNote.. 48
GinSingVoice.setFrequency... 49
GinSingVoice.setBlendSpeed...50
GinSingVoice.setDelay... 51

synth mode functions... 52

GinSingSynth.begin..54
GinSingSynth.preview...55
GinSingSynth.selectBank.. 56
GinSingSynth.selectPatch... 57
GinSingSynth.setWaveform...58
GinSingSynth.setWavemode..59
GinSingSynth.setNote..60
GinSingSynth.enableOverflow..61
GinSingSynth.setFrequency...62
GinSingSynth.setFreqVal..63
GinSingSynth.setAmplitude... 64
GinSingSynth.setAmplitudeVal...65
GinSingSynth.setFreqDist...66
GinSingSynth.setFreqDistVal..67

GinSingSynth.setDutyCycle...68
GinSingSynth.setDutyCycleVal..69
GinSingSynth.enableFreqTarget..70
GinSingSynth.setFreqTarget..71
GinSingSynth.setFreqTargetVal...72
GinSingSynth.enableFreqRamp...73
GinSingSynth.setFreqRamp...74
GinSingSynth.setFreqRampVal...75
GinSingSynth.enableAmpTarget..76
GinSingSynth.setAmpTarget..77
GinSingSynth.setAmpTargetVal...78
GinSingSynth.enableAmpRamp...79
GinSingSynth.setAmpRamp...80
GinSingSynth.setAmpRampVal..81
GinSingSynth.trigger... 82
GinSingSynth.release..83
GinSingSynth.setEnvelope..84
GinSingSynth.setEnvelopeVal...85

master functions..86

GingSingMaster.enableUserOutput..87
GinSingMaster.setAmplitude..88
GinSingMaster.setAmplitudeVal..89
GinSingMaster.setMasterAmplitude..90
GinSingMaster.setMasterAmplitudeVal..91
GinSingMaster.enableAmpTarget...92
GinSingMaster.setAmpTarget...93
GinSingMaster.setAmpTargetVal..94
GinSingMaster.enableAmpRamp..95
GinSingMaster.setAmpRamp..96
GinSingMaster.setAmpRampVal...97
GinSingMaster.trigger.. 98
GinSingMaster.release...99
GinSingMaster.setEnvelope.. 100
GinSingMaster.setEnvelopeVal..101

Appendix A – enumeration types.......................................102
Primitives.. 102
GSPreset... 102
GSWaveType...102
GSWaveMode.. 103
GSNote... 103
GSAllophone...103

GSAttackDur...106
GSDecRelDur.. 106
GSSynthOsc..106
GSSynthBank.. 107
GSSynthPatch...107
GSMasterMixer.. 108
GSCommand...108
GSRegister... 109

overview

purpose

The GinSing software library is a C++ class interface that communicates with the GinSing
Arduino Shield. The purpose of this document is to provide a functional reference of the
interface from a programming perspective. You may find this document useful when you
begin coding your applications on the Arduino. In addition to providing information on the
functions and what they do, this document also contains an appendix that describe the
constants and variables used throughout the library.

what is the GinSing library?

The GinSing library is a collection of source files written in C++ that integrate into your
Arduino applications through the Arduino Integrated Development Environment (IDE). When
you compile your Arduino application in the IDE, the source code is included in the
compilation process and linked into the executable program that is downloaded onto your
Arduino board.

The library communicates with the GinSing shield using a simple command and register
control communication interface as dictated by the GinSing's processing chip, known as the
Babblebot IC. This low level interface can be called directly if you wish, but the library also
provides high level conceptual software models that organize the functionality of the
Babblebot to make it easier to understand and control the Babblebot based on the type of
uses you may have for it.

software models

The software models in the library each target a specific element of functionality that is
available on the shield. You can switch from one model (or mode) to another quickly and
easily, allowing you to expand functionality as you develop your application. The four
software modes are preset, poly, voice, and synth as outlined in more detail below.

code integration

The library is organized into groups of functions (classes) based on which mode you are
using. Those familiar with the Arduino interface are most likely familiar with this as all of
the Arduino interface functions (for example Serial) are structured in the same way (i.e.
Serial.println()).

Unlike the Arduino, however, this library has a global interface class that you create
explicitly; the Arduino creates its interface classes internally, which means they are always
linked into your application whether you need them or not.

So to get started using the library, you need first to include the library code in your project
and then create the GinSing interface class in your app code. Note that nothing will
happen at this point; you have simply included the library into your application:

#include <GinSing.h> // include the GinSing library
GinSing GS; // create the GinSing interface class

Note that during the installation process the GinSing library files needed for this code to
compile will have been copied into your Arduino sketch folder. You can therefore examine
any of the GinSing source code by looking in that directory. This can be very useful to
understand the inner workings of the library and how you can interact with the low level
functions if you wish.

starting up and shutting down

Once you have created the GinSing interface class (in the example above the interface
class is called GS), you can initialize the shield by making one function call. After that,
you can access all of the other functions based on what you want to do.

So to initialize the shield for use, you call the begin() function on the base class. This
function (or method in C++ parlance) requires three arguments that correspond to the
hardware configuration jumpers set up on the shield:

#define rcvPin 4 // pin used for receiving
#define sndPin 3 // pin used for transmitting
#define ovfPin 2 // pin used for overflow control

GS.begin(rcvPin , sndPin , ovfPin); // start up GinSing

You can also shutdown the shield using end() if needed; which when called will mute the
output of the board. You must again call begin() if you wish to use it again. Note that the
GS class used in this code is your interface to all of the other functions available in the
library. To make it easier you access groups of functions, you can get them from the GS
class and refer to them on their own as illustrated below.

mode access

Once the system has been started up, you can access additional functionality based on the
mode that you want to use. The modes are actually C++ classes themselves contained
within the base class. For example, in order to use the voice mode (synthetic speech), we
can get the voice mode functions from the base interface, and then call functions within it:

GinSingVoice *voice = GS.getVoice(); // get voice mode

voice->begin(); // enter voice mode
voice->preview(); // listen to a sample

Note that the mode interfaces are pointers rather than static classes; syntactically this
means that you use an asterisk (*) to prefix the variable, and you use an arrow (→) instead

of the dot (.) to access the functions within the class. The reason for using a class as a
pointer is that you can throw away the interface when you are done using it so you don't
need to keep around a global variable. This code for example could be wrapped into its own
function. An alternative approach would be to avoid the local variable altogether if you
wish, but does make the code more wordy:

GS.getVoice()->begin(); // enter voice mode
GS.getVoice()->preview(); // listen to a sample

Either way works so its your preference as to which way you want to implement the
interface. Note that each mode also has a begin() method that you should call to set up the
system to match the mode you want to use. When you switch from one mode to another it
is generally advisable to call begin() on the new mode.

synth mode punch-through

Because the operating modes are simply conceptual models, there is flexibility in how the
models can operate together. On the actual hardware there are 144 status registers and 40
commands, and it is the setting of these registers and the sending of the commands that
determines what sound is created, regardless of what software operating mode you are in.

Synth mode is the closest analogy to the hardware, and as such as the most functionality
providing a near 1:1 relationship between the commands and registers and the functional
interface. The other operating modes are in effect simplifications of synth mode,
internally using synth mode to perform operations under its own function interface.
Because of this, you can always make synth mode calls in any operating mode to extend
functionality.

For example, if you are in poly mode, you can set the frequency using the
synth.setFrequency() function; this function does not exist in the poly mode interface for
simplicity, but you do have full control over the functionality of the chip in this way. Using
synth mode functions while in another operating mode is called “punch-through” because
you do not (or would wish) to actually switch to synth mode to make the changes; it is a
way to extend the function interface in the other modes without duplicating the function
set. Consider an example of using preset mode to load up a built-in effect; you can then
use synth mode punch-through to dynamically modify the sound effect in ways that make
the effect unique, but is still based on the original preset you load.

sample code

The GinSing software installation contains some sample source code programs that can help
guide you through the coding process. In the Arduino IDE, you can compile and run these
programs using the menu:

File → Sketchbook → GinSing

Before you write your first application using GinSing we recommend you take a quick run
through the numbered programs under this menu list (in order) to firmly establish the
concepts as well as the syntax presented here.

functional modes
There are four functional modes in the library – preset mode, poly mode, voice mode, and
synth mode; each targeting a different type of application. You can quickly and easily
switch between modes, allowing you to develop features as you learn more about how the
library works.

Each of the modes has its own set of functions that reflects its primary purpose. For this
reason this reference is organized by mode. Some modes have functions with the same
name (for example trigger()) and although may perform a similar function may require
different arguments.

preset mode

Preset mode is the simplest of the four modes
and has the simplest interface functions. In
preset mode, you can trigger on-board preset
configurations of the system to play sound
effects. Up to two presets can be loaded and
triggered at a given time (one for each of the
two banks). Preset mode is a good place to start
when adding sound to your application because it
requires minimal code and knowledge about how
the system works; it will get you up and running
with sounds in a very short time.

poly mode

Poly mode (or polyphonic mode) configures the
system to operate as a six channel musical
instrument. Each channel (or voice) operates
independently allowing up to 6 simultaneous
tones to be produced. This mode is a
simplification of synth mode in that all the voices
are configured identically and sent directly to
the output, and allows for parameter changes to
occur on all six voices using the same function
call (i.e. change waveform type).

voice mode

Voice mode can be used to produce artificial
speech. When voice mode is activated, all
resources in the system are used internally for
the purpose of generating human (or otherwise)
voice synthesis. The interface provides the
ability to string together basic speech fragments
(called allophones) into phrases as well as
control the tonal qualities of the synthesis. Voice
mode provides a very simple way to add artificial
voice to your Arduino project.

synth mode

Synth mode can be used to directly control all
aspects of complex waveform synthesis on the
Babblebot. The system is configured into 2 banks
of 3 digitally controlled oscillators (DCOs) that
are patched in such as way as to allow DCOs to
modulate each other creating complex waveform
patterns and tonal qualities. Synth mode
operates in much the same way as analog
synthesizers do, but does so with complete
digital control. It is the most complicated
interface, but also has the most user
functionality.

additional interfaces

master interface

In common with all of the above modes is a common master interface that is available
regardless of what mode you are currently in. The master interface controls the global
aspects of the system, such as overall output volume, timing functions, and command and
control functions. The master functions are available via the getMaster() method in the
base GinSing class an can be called at any time after the system has been initialized.

constants and definitions

For convenience, all of the constants, variable types, and fixed argument parameters
used in the interface are contained in a single file called GinSingDefs.h, and are included
in this document in appendix A. This file is a great resource for illustrating all of the
functional abilities of the interface and the chip.

Although the library source files are split into each of the subclass interfaces (i.e.
GinSingPreset.cpp / GinSingPreset.h), all the constants used by the interfaces are
presented in this single file. Having this file open as a cut/paste reference will save
valuable time manually typing in parameters throughout the interface.

base class functions
The base class functions provide the ability to initialize the system and gain access other
sections of the interface. It also provides for the low level command interface used
internally. This class (GingSing) must be explicitly created in your application with any
variable name you prefer; this document assumes the name “GS”.

state control

begin connect and initialize GinSing shield

end mute and disconnect GinSing shield

reset reset GinSing shield to power up state

isReady test if communication link is available

getVersion get the version of this library

subclass accessors

getPoly get the poly mode interface

getVoice get the voice mode interface

getPreset get the preset mode interface

getSynth get the synth mode interface

getMaster get the master interface

command & register control

sendCommand send a command to the Babblebot IC

writeRegister write to a Babblebot IC register

readRegister read from a Babblebot IC register

GinSing.begin

syntax
void begin (int rcvPin , int sndPin , int ovfPin)

description
Initializes the GinSing library, starts the communication between the Arduino and the
GinSing shield, and configures the system into a default state. This function must be
called before any other call can be made in the system, and only needs to be called
once.

example
#include <GinSing.h> // include the GinSing header file
GinSing GS; // create the interface class

#define rcvPin 4 // pin used for receiving
#define sndPin 3 // pin used for transmitting
#define ovfPin 2 // pin used for overflow control

GS.begin(rcvPin , sndPin , ovfPin);

arguments

rcvPin
An integer value that matches the hardware jumper on the GinSing shield. This value can either be 4
(default), 12 (alternate), or -1 (no jumper) and designates which pin on the Arduino board will be
allocated for receiving data from the shield. If the jumper is removed, the data receiving functions
will not work, but it will free up both pins 4 and 12 for your application (or other shields).

sndPin
An integer value that matches the hardware jumper on the GinSing shield. This value can either be 3
(default), or 11 (alternate) and designates which pin on the Arduino board will be allocated for
sending data to the shield. This jumper is required for the shield to function properly, and will utilize
the hardware input designated by the jumper.

ovfPin
An integer value that matches the hardware jumper on the GinSing shield. This value can be either 2
(default), 10 (alternate), or -1 (no jumper) and designates which pin on the Arduino board will be
allocated for flow control. If the jumper is not present then flow control will not be used and you
must guard against overrunning the communications manually in your code. If the jumper is removed,
flow control will not work, but it will free up both pins 2 and 10 for your application (or other
shields).

GinSing.end

syntax
void end ()

description
Mutes the GinSing shield, disables communication with the Babblebot IC, and
terminates the interface library. This function can be used in any shutdown code in
your application to ensure the shield is in a known and quiet state. No function calls
other than begin() should be made after this call.

example
GS.end();

GinSing.reset

syntax
void reset()

description
Sends a reset command to the Babblebot IC to reset to default powerup state. All
registers will be set to their default settings and the system will be muted. This
command should be followed by an initialization (i.e. begin()) function call based on
the desired operating mode to ensure proper configuration after reset.

example
GS.reset();

GinSing.isReady

syntax
bool ready = isReady ()

description
Polls the current state of the communication interface to determine if the system is
ready to accept commands. This function is used internally as a means of flow control
to avoid overrunning the interface between the Arduino and the Babblebot IC.

The Babblebot communicates using a serial interface with a 4 byte buffer on the chip.
When this function is called, the state of the buffer is checked; if the buffer is empty
it returns true, otherwise it returns false. Therefore any command (4 bytes or less)
can be stored in the buffer without delay if this function returns true. If this function
returns false, then further commands sent will be delayed until the data pending in
the buffer is processed by the Babblebot IC first.

This function has no effect if the flow control jumper is not placed on the GinSing
shield. In this case it is possible to overrun the communication link without warning
unless you make accommodations in your code, such as making commands on a
predetermined time interval. The interface operates at 9600 baud, or approximately
1000 bytes per second; given that most commands are 4 bytes in length or less, this
allows for approximately 250 commands per second. Additional processing required by
the chip for some commands can reduce this effective rate drastically, such as
speaking an phrase, as it requires more time to generate than to transmit.

example
while (!GS.isReady()) {

Serial.println (“GinSing is busy ...”);
delay (100);

}

returns

ready
A boolean value that is true if the communication link is ready to accept commands, or false if it is
busy processing pending commands.

GinSing.getVersion

syntax
int version = getVersion ()

description
Gets the version number for the GinSing library currently in use by the Arduino IDE.
This version number can be used for compatibility issues between different versions of
the GinSing library. Note that this version number relates only to the software library
and has no information about the version of the GinSing shield you may be using.

example
Serial.print (“GinSing Version = “);
Serial.println (GS.getVersion() , DEC);

returns

version
An integer value that represents the version of the software library currently in use by the IDE.

GinSing.getPoly

syntax
GinSingPoly * polyClass = getPoly ()

description
Gets the poly mode class interface. The poly mode interface contains methods that
configure and control the system as a polyphonic musical instrument. This interface
pointer is only valid once the system has been initialized and will remain valid from
then on.

To ensure proper working of poly mode, the poly mode function begin() should be
called prior to making other function calls in this class.

example
GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->begin(); // enter poly mode
poly->preview(); // listen to a sample

returns

polyClass
A pointer to the poly mode interface. The variable returned by this type is a GinSingPoly class pointer.
The address of the interface will not change and can be referenced at any time once assigned.

GinSing.getVoice

syntax
GinSingVoice * voiceClass = getVoice ()

description
Gets the voice mode class interface. The voice mode interface contains methods that
configure and control the system as a synthetic voice generator. This interface pointer
is only valid once the system has been initialized and will remain valid from then on.

To ensure proper working of voice mode, the voice mode function begin() should be
called prior to making other function calls in this class.

example
GinSingVoice *voice = GS.getVoice(); // get voice mode

voice->begin(); // enter voice mode
voice->preview(); // listen to a sample

returns

voiceClass
A pointer to the voice mode interface. The variable returned by this type is a GinSingVoice class
pointer. The address of the interface will not change and can be referenced at any time once
assigned.

GinSing.getPreset

syntax
GinSingPreset * presetClass = getPreset ()

description
Gets the preset mode class interface. The preset mode interface contains methods
that configure and control the system to allow for the loading and playing of built-in
sound effects. This interface pointer is only valid once the system has been initialized
and will remain valid from then on.

To ensure proper working of preset mode, the voice mode function begin() should be
called prior to making other function calls in this class.

example
GinSingPreset *preset = GS.getPreset(); // get preset mode

preset->begin(); // enter preset mode
preset->preview(); // listen to a sample

returns

presetClass
A pointer to the preset mode interface. The variable returned by this type is a GinSingPreset class
pointer. The address of the interface will not change and can be referenced at any time once
assigned.

GinSing.getSynth

syntax
GinSingSynth * synthClass = getSynth()

description
Gets the synth mode class interface. The synth mode interface contains methods that
configure and control the system to allow for complex waveform synthesis. This
interface pointer is only valid once the system has been initialized and will remain
valid from then on.

To ensure proper working of synth mode, the synth mode function begin() should be
called prior to making other function calls in this class.

example
GinSingSynth *synth = GS.getSynth(); // get synth mode

synth->begin(); // enter synth mode
synth->preview(); // listen to a sample

returns

synthClass
A pointer to the synth mode interface. The variable returned by this type is a GinSingSynth class
pointer. The address of the interface will not change and can be referenced at any time once
assigned.

GinSing.getMaster

syntax
GinSingMaster * masterClass = getMaster()

description
Gets the master class interface. The master interface contains methods that
manipulate global variables within the system, such as output volume, timing
parameters, etc. This interface pointer is only valid once the system has been
initialized and will remain valid from then on.

example
GinSingMaster *master = GS.getMaster(); // get master functions

master->setMasterAmplitude(0.0f); // mute master volume

returns

masterClass
A pointer to the master class interface. The variable returned by this type is a GinSingMaster class
pointer. The address of the interface will not change and can be referenced at any time once
assigned.

GinSing.sendCommand

syntax
void sendCommand (GSCommand cmd , ubyte a1 , ubyte a2 , ...)

description
Sends a low level command to the Babblebot IC. Commands can be sent to the
Babblebot IC to control the execution state of the chip, such as to load and trigger
sounds, and so on. A complete description of the commands can be found in the
Babblebot IC data-sheet and are outlined in appendix A. The library uses this
command internally, so this function is only needed if you want complete control over
the low level commands a registers on the chip.

example
// set master amplitude to 50% (through register set)

GS.sendCommand (WriteOneByte , // send command to write 1 byte
 MasterAmplitude , // write to the master amp register
 127); // write a value of 127 (50%)

arguments

cmd
The command to be executed by the Babblebot IC. The list of valid commands is enumerated as the
GSCommand variable type in appendix A. Note that when using this function the low level command
header is sent automatically and is not needed to communicate as per the data sheet specification.

a1 - a4
The unsigned byte data arguments associated with the specified command. Commands can have from
zero to 4 arguments, and the number of arguments must match exactly the requirements for the
command to work properly. A complete list and description of both commands and registers can be
found in appendix A.

GinSing.writeRegister

syntax
void writeRegister (GSRegister regIdx , ubyte value , ubyte mask)

description
Sets the value of specific register on the Babblebot IC. The Babblebot IC has 144
registers that set operating parameters of the chip. A complete description of the
registers can be found in the Babblebot IC data-sheet and outlined in appendix A. The
higher level operating modes use this command internally, so this function is only
needed for low level custom user control.

example
// set bank A amplitude register to zero
GS.writeRegister (A_Amplitude , 0);

arguments

regIdx
The target register to set. The registers are enumerated in appendix A as the variable type GSRegister.

value
The unsigned byte value to assign to the register. To support bit operations, only bits in the value that
have a matching bit position in the mask will be changed. Bits that do not have a matching position in
the mask will not be changed (don't care).

mask
A bit-mask specifying which bits in the value will be set. If a bit in the mask has a value of 1, the
corresponding value for that bit will be set in the register. If a bit in the mask has a value of 0, then
the value for that bit will not be written.

GinSing.readRegister

syntax
ubyte readRegister (GSRegister regIdx)

description
Reads the contents of a specified register on the Babblebot IC. The Babblebot IC has
144 registers that set operating parameters of the chip. A complete description of the
registers can be found in the Babblebot IC data-sheet and outlined in appendix A. This
function will not work properly if the GinSing shield is not using the receive jumper on
the board.

example
// dump the contents of all the registers

for (int regIdx = (int) A_MixControl_0; regIdx <= (int) Output_B3; regIdx++)
{

ubyte value = GS.readRegister ((GSRegister) regIdx);
Serial.println (value , DEC);

}

arguments

regIdx
The target register to read. The registers are enumerated in appendix A as the variable type
GSRegister.

preset mode functions
Preset mode is the simplest of the four modes and has the simplest interface functions. In
preset mode, you can trigger on-board preset configurations of the system to play sound
effects. Up to two presets can be loaded and triggered at a given time (one for each of the
two banks). Preset mode is a good place to start when adding sound to your application
because it requires minimal code and knowledge about how the system works; it will get
you up and running with sounds in a very short time.

The presets stored on the Babblebot IC are simply predefined register sets that are copied
into the registers when loaded. Once loaded, you can optionally modify the registers using
the synth mode functions; this allows you to form base effects that you can customize and
modify in real-time.

Preset mode functions are accessed via the GinSingPreset class obtained through the base
class getPreset() function.

state control

begin configure system for preset mode

preview play preset mode demo

envelope control

load load a preset from built-in memory

trigger trigger the amplitude envelope

release release the amplitude envelope

setAmplitude set the amplitude

GinSingPreset.begin

syntax
void begin ()

description
Configures the system for use in preset mode. This function should be called when
first using the preset mode functions or when switching from a different operating
mode to ensure that the system is in a known state.

example
GinSingPreset *preset = GS.getPreset(); // get preset mode

preset->begin(); // enter preset mode
preset->preview(); // listen to a sample

GinSingPreset.preview

syntax
void preview ()

description
Triggers a brief demonstration of this operating mode. This function can be called at
any time to verify that the system is working and is in the proper state for additional
calls that you may make to this class. When called, this function sets the bank
amplitudes to 50%, loads the Carney and TipToe effects into the banks, and triggers
the effects for 3 seconds.

example
GinSingPreset *preset = GS.getPreset(); // get preset mode

preset->preview(); // preview this mode

GinSingPreset.load

syntax
void load (ubyte bankIdx , GSPreset presetIdx)

description
Loads one of 32 built-in preset sound effect settings from the Babblebot IC into the
registers associated with the specified bank. The preset can then be triggered to play
the sound effect. Up to two sound effects (one for each bank) can be loaded at any
given time. The preset effects can provide a solid basis from which custom
modifications can be made with your own code.

example
GinSingPreset *preset = GS.getPreset(); // get preset mode

preset->load (0 , Carney); // load Carney preset on bank A
preset->trigger (0); // trigger the preset

arguments

bankIdx
An integer value that specifies which bank to load the preset sound effect into. If a zero is specified,
the preset is loaded into bank A, if a one is specified the preset is loaded into bank B.

presetIdx
The preset definition to load. Preset definitions are enumerated as the GSPreset variable type in
appendix A.

GinSingPreset.trigger

syntax
void trigger (ubyte bankIdx)

description
Triggers the preset currently loaded preset on the specified bank. When triggered, the
amplitude envelope (ADSR) specified for the preset begins its sequence. For built-in
presets, this envelope is constant and will run continuously, but can be modified by
you if you wish to control the volume over time (see synth.setEnvelope for details).
If trigger() is called while the effect is playing its amplitude envelope will restart.

Example
// cycle through the effects and load them into the first bank

GinSingPreset *preset = GS.getPreset();

for (int preIdx = (int) SpaceWarp; preIdx < (int) AmpMod; preIdx++)
{
 preset->load (0 , (GSPreset) presetIdx); // load preset on bank 0
 preset->trigger (0); // trigger the preset
 delay (1000); // listen to it
 preset->release (0); // release the preset
}

arguments

bankIdx
An integer value that specifies which bank to trigger. If a zero is specified, the preset is on bank A is
triggered, if a one is specified the preset on bank B is triggered. Both banks can be triggered
simultaneously.

GinSingPreset.release

syntax
void release (ubyte bankIdx)

description
Releases the preset currently loaded preset on the specified bank. When released, the
amplitude envelope (ADSR) specified for the preset enters its release stage. For built-
in presets, this release is instantaneous, but can be modified by you if you wish to
control the volume over time (see synth.setEnvelope() for details). If release() is
called while the effect is not playing the function will have no effect.

example
// cycle through the effects and load them into the first bank

GinSingPreset *preset = GS.getPreset();

for (int preIdx = (int) SpaceWarp; preIdx < (int) AmpMod; preIdx++)
{
 preset->load (0 , (GSPreset) presetIdx); // load preset on bank 0
 preset->trigger (0); // trigger the preset
 delay (1000); // listen to it
 preset->release (0); // release the preset
}

arguments

bankIdx
An integer value that specifies which bank to release. If a zero is specified, the preset is on bank A is
release, if a one is specified the preset on bank B is release.

GinSingPreset.setAmplitude

syntax
void setAmplitude (ubyte bankIdx , float amplitude)

description
Sets the output amplitude of the sound effect preset loaded on the specified bank.
The amplitude can be controlled continuously, and serves as an alternative to using
the trigger/release methodology on the effect. If the preset has triggered using the
trigger() function, the volume will be overwritten by the amplitude envelope (ADSR)
immediately after this function is called.

example
GinSingPreset *preset = GS.getPreset(); // get preset mode
preset->load (0 , Carney); // load Carney preset on bank A
preset->setAmplitude (1.0f); // hear the effect at full volume

arguments

bankIdx
An integer value that specifies which bank to set the volume for. If a zero is specified, the volume is
set on bank A, if a one is specified, the volume is set on bank B.

amplitude
A floating point value between 0.0 and 1.0 that sets the relative output volume of the effect. A value
of 0.0 will mute the sound, whereas a value of 1.0 will set the output amplitude at full volume.

poly mode functions
Poly mode (or polyphonic mode) configures the system to operate as a six channel musical
instrument. Each channel (or voice) operates independently allowing up to 6 simultaneous
tones to be produced. This mode is a simplification of synth mode in that all the voices are
configured identically and allows for parameter changes to occur on all six voices using the
same function call (i.e. change waveform type).

Poly mode is essentially a simplification of synth mode in that it configures all six digitally
controlled oscillators (DCOs) identically with no modulation, and patches them to directly
to the output mixers. For complete customization of voices you punch-through to the synth
mode functions.

Poly mode functions are accessed via the GinSingPoly class obtained through the base class
getPoly() function.

state control

begin configure system for poly mode

preview play poly mode demo

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

DCO parameters

setNote set the frequency as a musical note

setWaveform set the waveform type

setFreqDist set the frequency distortion level

setDutyCycle set the duty cycle for pulse wave

GinSingPoly.begin

syntax
void begin ()

description
Configures the system for use in poly mode. This function should be called when first
using the poly mode functions or when switching from a different operating mode to
ensure that the system is in a known state.

example
GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->begin(); // enter poly mode
poly->preview(); // listen to a sample

GinSingPoly.preview

syntax
void preview ()

description
Triggers a brief demonstration of this operating mode. This function can be called at
any time to verify that the system is working and is in the proper state for additional
calls that you may make to this class. When called, this function will play trigger each
of the six voices in delayed sequence, then release all the voices simultaneously after
3 seconds. When called directly after begin() this will result in a playback of the A
Major musical scale.

example
GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->preview(); // preview the basic features of this mode

GinSingPoly.trigger

syntax
void trigger (ubyte voiceIdx)

description
Triggers the specified voice. In poly mode there are six oscillators (or voices) that can
play notes independently of each other, providing six note polyphony. This might be
used for example for playing 2 part harmony with a 4 note base chord. When this
function is called, the specified voice will begin executing its amplitude envelope
(ADSR), and will sequence through to its sustain amplitude, where it will hold the
amplitude until release() is called. If this function is called while the envelope is
running it will start the envelope sequence over again.

example
// trigger the default voices in delayed sequence

GinSingPoly *poly = GS.getPoly();

for (ubyte voiceIdx = 0; voiceIdx <= 5; voiceIdx++)
{

poly->trigger (voiceIdx);
delay (1000);

}

arguments

voiceIdx
An integer value that specifies which voice (0-5) should be triggered. If the constant AllVoices is used
(as defined in appendix A), all voices will be triggered.

GinSingPoly.release

syntax
void release (ubyte voiceIdx)

description
Releases the specified voice. In poly mode there are six oscillators (or voices) that can
play notes independently of each other, providing six note polyphony. When this
function is called, the specified voice will begin terminating its amplitude envelope
(ADSR), and will sequence through to its release amplitude. If this function is called
while the envelope is not active (no triggered), it will have no effect.

example

// release all the voices and wait for release

GinSingPoly *poly = GS.getPoly();

poly->release (AllVoices);
delay (300);

arguments

voiceIdx
An integer value that specifies which voice (0-5) should be release. If the constant AllVoices is used
(as defined in appendix A), all voices will be released.

GinSingPoly.setNote

syntax
void setNote (ubyte voiceIdx , GSNote noteSel)

description
Sets the frequency of the voice based on a musical note. The Babblebot IC has a built
in note-to-frequency table that spans an eight octave tempered musical scale range
from C0 (16.352 Hz) to B7 (3,951.067 Hz). Note that musical notes below C0 are
subsonic and will not be heard by most humans. When this function is called, the
output frequency of the specified voice will be set to the corresponding frequency for
the selected musical note.

example
// play concert A 440

GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->setNote (0 , A_4); // set voice 0 to A440
poly->trigger (0); // trigger envelope

arguments

voiceIdx
An integer value that specifies which voice (0-5) to set the note for. If the constant AllVoices is used
(as defined in appendix A), all voices will be set to the same note.

noteSel
The musical note to set for the voice. The note is enumerated as a the variable type GSNote in the
file appendix A, and is based on a concert A 440 (A_4) tempered musical scale.

GinSingPoly.setWaveform

syntax
void setWaveform (ubyte voiceIdx , GSWaveType waveSel)

description
Sets the waveform type for the specified voice. Initially all voices are set to the same
waveform to make them sound tonally identical, but you can change any or all of the
voices at any time using this function.

example
// change all voices to use triangle waves

GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->setWaveform (AllVoices , TRIANGLE); // set all voices to triangle

arguments

voiceIdx
An integer value that specifies which voice (0-5) to set the waveform for. If the constant AllVoices is
used (as defined in appendix A), all voices will be set to the same waveform.

waveSel
The waveform type for the selected voice. The waveform type is enumerated as the variable type
GSWaveType in the file appendix A, and can be one of SINE, TRIANGLE, SAWTOOTH, RAMP, PULSE, or
NOISE.

GinSingPoly.setFreqDist

syntax
void setFreqDist (ubyte voiceIdx , float distLevel)

description
Sets the relative frequency distortion factor for the specified voice. Frequency
distortion can be used to change the timbre (tonal quality) of a voice by varying the
output frequency slightly at a very fast rate. The effect adds a whistling or windy
quality to the sound.

example
// set lead voice (0) to whistle

GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->setFreqDist (0 , 0.2f); // set 20% whistle effect

arguments

voiceIdx
An integer value that specifies which voice (0-5) to set the waveform for. If the constant AllVoices is
used (as defined in appendix A), all voices will be set to the same waveform.

distLevel
A floating point value that represents the amount of relative frequency distortion to apply to the
voice. A value of 0.0 will eliminate the effect, whereas a value of 1.0 will add the maximum effect.

GinSingPoly.setDutyCycle

syntax
void setDutyCycle (ubyte voiceIdx , float dutyCycle)

description
Sets the on/off pulse width ratio for the current voice. This function only has an
effect if the currently selected waveform is PULSE. Duty cycle can change the timbre
(tonal quality) of a voice by accentuating various harmonics in the waveform based
on the ratio of on to off time in waveform cycle.

example
// set lead voice (0) to a square wave

GinSingPoly *poly = GS.getPoly(); // get poly mode

poly->setWaveform (0 , PULSE); // set voice to pulse wave
poly->setDutyCycle (0 , 0.0f); // set the duty cycle to 50%

arguments

voiceIdx
An integer value that specifies which voice (0-5) to set the duty cycle for. If the constant AllVoices is
used (as defined in appendix A), all voices will be set to the same duty cycle.

dutyCycle
A floating point value that specifies the relative time between the waveform output going from
maximum to minimum in each cycle. A value of 0.0 will produce a square wave. Negative values
(down to -1.0) will decrease the ratio of maximum to minimum time, whereas positive values (up to
1.0) will increase the ratio of maximum to minimum time.

GinSingPoly.setEnvelope

syntax
void setEnvelope (ubyte voiceIdx,
 GSAttackDur attackDur , float attackAmp,
 GSDecRelDur decayDur , float decayAmp,
 GSDecRelDur releaseDur , float releaseAmp)

description
Sets the amplitude envelope parameters for the specified voice. Each voice has a
table that determines how the output amplitude varies over time once the voice is
triggered. This table has four sequential stages (Attack, Decay, Sustain, Release)
known as an ADSR envelope, which define amplitude ramps within a time window. The
sustain stage is unique in that its time window is variable based on the time between
the completion of the decay stage until release() is called, and its amplitude is fixed
at the decay stage level; for this reason it does not need to be specified.

example

GinSingPoly *poly = GS.getPoly(); // get poly mode

setEnvelope (AllVoices , AT_24MS , 0.9f , // 24 ms attack to 90% vol
 DR_2MS , 0.5f , // 2 ms decay to 50% vol
 DR_575MS , 0.0f); // .5 second release to 0%

arguments

voiceIdx
An integer value that specifies which voice (0-5) to set the duty cycle for. If the constant AllVoices is
used (as defined in appendix A), all voices will be set to the same duty cycle.

attackDur | attackAmp
Attack stage settings. Duration time specified as a variable type GSAttackDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

decayDur | decayAmp
Decay stage settings. Duration time specified as a variable type GSDecRelDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

releaseDur | releaseAmp
Release stage settings. Duration time specified as a variable type GSDecRelDur enumerated in
appendix A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

voice mode functions
Voice mode can be used to produce artificial speech. When voice mode is activated, all
resources in the system are used internally for the purpose of generating human (or
otherwise) voice synthesis. The interface provides the ability to string together basic
speech fragments (called phonemes) into phrases as well as control the tonal qualities of
the synthesis. Voice mode provides a very simple way to add artificial voice to your Arduino
project.

Voice mode is in essence a set of built-in register configurations (one per allophone) that
are loaded into the registers when an allophone is processed, and blended as the
allophones change. Due to the complex nature of patching, mixing, and modulation to
model each allophone there are limited but interesting uses of punch-through to synth
mode.

Voice mode functions are accessed via the GinSingVoice class obtained through the base
class getVoice() function.

state control

begin configure system for voice mode

preview play voice mode demo

voice mode control

speak speak a phrase

getMillis compute phrase duration

voice mode parameters

setNote set the speech frequency as a musical note

setFrequency set the speech frequency for speech

setBlendSpeed set the relative blending speed between phonemes

setDelay set the relative delay between phonemes

GinSingVoice.begin

syntax
void begin ()

description
Configures the system for use in voice mode. This function should be called when first
using the voice mode functions or when switching from a different operating mode to
ensure that the system is in a known state.

example
GinSingVoice *voice = GS.getVoice(); // get voice mode
voice->begin(); // enter voice mode
voice->preview(); // listen to a sample

GinSingVoice.preview

syntax
void preview ()

description
Triggers a brief demonstration of this operating mode. This function ca be called at
any time to verify that the system is working and is in the proper state for additional
calls tat you may make to this class. When called, this function will speak the phrase
“hello world” in the default pitch and speed.

example
GinSingVoice *voice = GS.getVoice(); // get voice mode
voice->begin(); // enter voice mode
voice->preview(); // listen to a sample

GinSingVoice.speak

syntax
void speak (GSAllophone * phrase)

description
Speaks the given phrase using the current voice settings. The phrase consists of an
arbitrary length array of allophones that is terminated with the _ENDPRHASE token.
Synthetic speech is produced by stringing together a sequence of short vocalizations,
with optional inflection and pauses.
When called, this function will sequentially send each allophone to the Babblebot IC
for processing. Depending on the buffer state of the communication interface and the
amount of time to process (speak) the allophone, this function may block. It is
generally recommended to use short phrases when blocking may be an issue in your
application.

Example
// speak the phrase “I am GinSing”

GinSingVoice *voice = GS.getVoice();

GSAllophone welcome[] = { _IE , _A , _M ,
 _BENDDN , _J, _I , _NE ,
 _SE , _PITCHDN , _I , _PITCHDN , _NGE ,
 _PA0 , _ENDPHRASE };

voice->speak (msg);

arguments

phrase
An array of allophones to speak, terminated by the _ENDPHRASE token. The allophones are
enumerated in the variable type GSAllophone in appendix A.

Certain allophones are silent and are control commands that temporarily modify the speed, volume,
and pitch of the single allophone that follows it. These are _SPEEDUP, _SPEEDDN , _VOLUP, _VOLDN,
_PITCHUP, _PITCHDN, _BENDUP, and _BENDDN.

Certain allophones are for controlling timing for pauses and fixed delays. These are _PA0, _PA1, _PA2,
_FD0, _FD1, and _FD2. Refer to appendix A for details on their meaning.

GinSingVoice.getMillis

syntax
int speakTime = getMillis (GSAllophone * phrase)

description
Computes the approximate amount of time that the given phrase will take to
complete on the GinSing shield. This function can be useful to approximate how long
the Arduino will be blocked waiting for speech to complete in advance. The time is
approximate because it does not include time to transmit the phrase to the Babblebot
IC and any other pending operations that may be underway when the phrase is spoken.

example
// say hello and wait for completion

GinSingVoice *voice = GS.getVoice();

GSAllophone hello[] = { _HE , _E , _LO , _OE , _PA1 , _ENDPHRASE };

voice-> speak (hello);
delay (voice->getMillis(hello));

arguments

phrase
An array of allophones to compute speech time for, terminated by the _ENDPHRASE token. The
allophones are enumerated in the variable type GSAllophone in appendix A.

returns

speakTime
The approximate amount of time (in milliseconds) that the phrase will take to speak (and
potentially block) on the GinSing shield.

GinSingVoice.setNote

syntax
void setNote (GSNote noteSel)

description
Sets the speaking frequency for speech synthesis based on a musical note. The
Babblebot IC has a built in note-to-frequency table that spans an eight octave
tempered musical scale range from C0 (16.352 Hz) to B7 (3,951.067 Hz). Note that
musical notes below E0 are subsonic and will not be heard by most humans. When this
function is called, the speaking frequency will be set based on the selected musical
note.

example
// sing a simple song

GSNote notes[10] = { C_4, E_4, D_4, F_4, E_4, G_4, E_4, F_4, D_4, E_4 };

GSAllophone phrase[] = { _LE , _AA , _ENDPHRASE }; // phrase to sing

GinSingVoice *voice = GS.getVoice(); // get voice mode

for (int noteCnt = 0; noteCnt < 10; noteCnt++) // run through notes
{

voice->setNote (notes [noteCnt]); // set the musical note
voice->speak (phrase); // sing the phrase

 delay (500); // wait 1/2 second
}

arguments

noteSel
The musical note to set for the voice. The note is enumerated as a the variable type GSNote in the
file appendix A, and is based on a concert A 440 (A_4) tempered musical scale.

GinSingVoice.setFrequency

syntax
void setFrequency (float freqHz)

description
Sets the frequency for speech synthesis in Hertz (cycles per second). The speaking
frequency can be set between 0.0009 Hz and 7,812.50 Hz, although frequencies less
than 20 Hz are typically too low to be detected by normal humans.

Example
// set the voice to a low frequency

GinSingVoice *voice = GS.getVoice(); // get voice mode

GSAllophone phrase[] = { _GO, _OO, _OO, _DE, _PA2, // “goodbye”
 _BE, _IE, _ENDPHRASE };

voice->setFrequency (100.0f); // set freq to 100 Hz
voice->speak(phrase); // speak the phrase

arguments

freqHz
An floating point value that represents the speaking frequency in Hz.

GinSingVoice.setBlendSpeed

syntax
void setBlendSpeed (float relSpeed)

description
Sets the relative allophone blending speed for speech synthesis. The Babblebot IC
speaks phrases based on speech fragments (phonemes). To make the speech smooth,
the phoneme synthesis parameters are blended over time to create a continuous
transition between phonemes. This function can be used to specify how much blending
is performed on the allophones.

example
// slur the phonemes

GinSingVoice *voice = GS.getVoice(); // get voice mode

GSAllophone phrase[] = {_HE, _E, _LO, _PA1, _ENDPHRASE };

voice->setBlendSpeed (0.1f); // set blend speed to 10%
voice->speak(phrase); // speak the phrase

arguments

relSpeed
An floating point value that represents the relative blending speed between allophones. A value of
zero will disable allophone blending, resulting in immediate transitions between phones in the spoken
phrase. A value of 1.0 will result in continuous blending and highly slurred speech.

GinSingVoice.setDelay

syntax
void setDelay (float relDelay)

description
Sets the relative delay between allophone transitions. The delay can be used to speed
up or slow down the rate at which allophones are spoken. This value in combination
with blend speed can add unique character to the voice synthesis.

example
// slow down speech

GinSingVoice *voice = GS.getVoice(); // get voice mode

GSAllophone phrase[] = { _HE, _E, _LO, _OE, _PA1, // “hello”
 _W,_ER, _LE, _ED, _ENDPHRASE }; // “world”

voice->setDelay (0.1f); // set delay speed to 10%
voice->speak(phrase); // speak the phrase

arguments

relDelay
A floating point value that specifies the relative delay in sequencing allophones. A value of 0.0 will
slow speech down to a single allophone, whereas a value of 1.0 will transition through the allophones
one after another immediately.

synth mode functions
Synth mode can be used to directly control all aspects of complex waveform synthesis on
the Babblebot. The system is configured into 2 banks of 3 digitally controlled oscillators
(DCOs) that are patched in such as way as to allow one DCO to modulate others (i.e.
amplitude, frequency, pulse width), creating complex waveform patterns and tonal
qualities. Synth operates in much the same way as analog synthesizers do, but does so with
complete digital control.

Synth mode functions are accessed via the GinSingSynth class obtained through the base
class getSynth() function.

state control

begin configure system for synth mode

preview play synth mode demo

bank & patch

selectBank select the current bank

setPatch specify the DCO patch routing

DCO parameters

setWaveform set the waveform type

setWavemode set the waveform mode

setNote set the frequency as a musical note

enableOverflow enable or disable wavetable overflow handling

setFrequency set the frequency in Hz

setFreqVal set the frequency as an integer

setAmplitude set the output amplitude

setAmplitudeVal set the amplitude as an integer

setFreqDist set the frequency distortion level

setFreqDistVal set the frequency distortion as an integer

setDutyCycle set the duty cycle for pulse wave

setDutyCycleVal set the duty cycle for pulse wave as an integer

targeting & ramping

enableFreqTarget enable or disable frequency ramp targeting

setFreqTarget set the frequency ramp target and rate

setFreqTargetVal set the frequency ramp and target as integers

enableFreqRamp enable or disable frequency ramping

setFreqRamp set the frequency ramp rate

setFreqRampVal set the frequency ramp rate as an integer

enableAmpTarget enable or disable amplitude ramp targeting

setAmpTarget set the amplitude ramp target and rate

setAmpTargetVal set the amplitude ramp target and rate as integers

enableAmpRamp enable or disable amplitude ramping

setAmpRamp set the amplitude ramp rate

setAmpRampVal set the amplitude ramp rate as an integer

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

setEnvelopeVal set the amplitude envelope parameters as integers

GinSingSynth.begin

syntax
void begin ()

description
Configures the system for use in synth mode. This function can be called to establish a
known state for using functions in the class. When using synth mode for punch-through
functions (calling while in a different mode) it should not be called to avoid changing
the state of registers.

example
GinSingSynth *synth = GS.getSynth(); // get synth mode

synth->begin(); // enter synth mode
synth->preview(); // listen to a sample

GinSingSynth.preview

syntax
void preview ()

description
Triggers a brief demonstration of this operating mode. This function can be called at
any time to verify that the system is working and is in the proper state for additional
calls that you make to this class. When called, this function will demonstrate a simple
modulation example for approximately six seconds.

example
GinSingSynth *synth = GS.getSynth(); // get synth mode
synth->preview(); // listen to a sample

GinSingSynth.selectBank

syntax
void selectBank (GSSynthBank bankSel)

description
Selects the current bank to be targeted for DCO functions. To address a DCO, both the
bank index and the DCO index are required. To simplify this, you can call this function
to specify the bank once, which will target other DCO functions to target the bank
without having to explicitly pass it each time.

example
GinSingSynth *synth = GS.getSynth(); // get synth mode

synth->selectBank (BANK_A); // select bank A
synth->setPatch (OSC_1_TO_MIXER); // patch DCO A1 to mixer
synth->setFrequency (OSC_1 , 1000.0f); // set the oDCO A1 to 1 kHz

arguments

bankSel
Specifies the bank will be used for as a target for DCO functions. The variable type GSSynyhBank can
be either BANK_A or BANK_B.

GinSingSynth.selectPatch

syntax
void setPatch (uint patchSel)

description
Sets the DCO patch configuration for the currently selected bank. A patch defines a
routing map among the DCOs that determines how they are connected to each other
and the output mixer. For example, you can patch DCO 3 to frequency modulate DCO
1 with its output to produce a complex waveform on the current bank. The patch
configuration argument is a bit-mask, which allows for multiple routing paths to be
specified completely for the bank using the bitwise or operator.

example
// frequency sweep a base tone

GinSingSynth *s = GS.getSynth(); // get synth mode

s->selectBank (BANK_A); // select bank A

s->setPatch (OSC_1_TO_MIXER // patch DCO 1 to mixer
 | OSC_3_FRQMOD_OSC_1); // patch DCO 3 to FM DCO 1

s->setFrequency (OSC_1 , 100.0f); // set the base tone frequency
s->setFrequency (OSC_3 , 1.0f); // set the modulation frequency

arguments

patchSel
An unsigned integer (16 bit mask) created from the enumerated variable type GSSynthPatch. The
patch options are described in detail in appendix A. The enumeration is such that the bits in the
configuration mask can be combined using the bitwise or mechanism (|). Note that each bank has its
own patch configuration and this function targets the currently selected bank (via selectBank).

GinSingSynth.setWaveform

syntax
void setWaveform (GSSynthOsc dcoSel , GSWaveType waveSel)

description
Sets the waveform type for the specified DCO on the currently selected bank.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->selectBank (BANK_A); // select bank A
s->setWaveform (OSC_ALL , SINE); // set all DCOs on bank A to sine

arguments

dcoSel
The DCO to change the waveform for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

waveSel
The waveform type for the selected voice. The waveform type is enumerated as the variable type
GSWaveType in the file appendix A, and can be one of SINE, TRIANGLE, SAWTOOTH, RAMP, PULSE, or
NOISE.

GinSingSynth.setWavemode

syntax
void setWavemode (GSSynthOsc dcoSel , GSWaveMode modeSel)

description
Sets the waveform mode (bias) for the DCO on the currently selected bank. By
default, DCOs have output values that are both positive and negative, providing a
symmetrical output. However, for modulation purposes it can be useful to offset, or
bias the output so that the range of values are only positive. For example, when using
one DCO to amplitude modulate another with a square wave, a symmetrical output of
the modulator would only cause a phase change rather and turning the amplitude on
and off as a biased wave would.

example
// generate a 1 kHz on/off tone

GinSingSynth *s = GS.getSynth(); // get synth mode

s->selectBank (BANK_A); // select bank A functions

s->setPatch (OSC_1_TO_MIXER // patch DCO 1 to mixer
 | OSC_2_AMPMOD_OSC_1); // set DCO 2 to AM DCO 1

s->setFrequency (OSC_1 , 1000.0f); // set the tone at 1 kHz
s->setFrequency (OSC_2 , 1.0f); // turn on/off at 1 Hz
s->setWaveform (OSC_2 , PULSE); // square wave = on/off

s->setWavemode (OSC_2 , POSITIVE); // bias waveform zero to amp

arguments

dcoSel
The DCO to change the waveform mode for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

modeSel
The type of waveform bias to set. Waveform bias is enumerated as the variable type GSWaveMode,
and can be one of SYMMETRICAL or POSITIVE. Note that if the amplitude for the DCO is negative, the
bias will switch from positive to negative.

GinSingSynth.setNote

syntax
void setNote (GSSynthOsc dcoSel , GSNote noteSel)

description
Sets the frequency of the DCO based on a musical note. The Babblebot IC has a built
in note-to-frequency table that spans an eight octave tempered musical scale range
from C0 (16.352 Hz) to B7 (3,951.067 Hz). Note that musical notes below E0 are
subsonic and will not be heard by most humans. When this function is called, the
output frequency of the specified voice will be set to the corresponding frequency for
the selected musical note.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setNote (OSC_1 , A_4); // set DCO 1 to A440
s->trigger (OSC_1); // trigger envelope

arguments

dcoSel
The DCO to set the note for. The DCO selection is enumerated as the variable type GSSynthOsc, and
can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via selectBank).

noteSel
The musical note to set for the voice. The note is enumerated as a the variable type GSNote in the
file appendix A, and is based on a concert A 440 (A_4) tempered musical scale.

GinSingSynth.enableOverflow

syntax
void enableOverflow (GSSynthOsc dcoSel , bool enableOVF)

description
Enables or disables overflow processing on wavetable cycling. The Babblebot IC uses a
24-bit number to keep track of the current position in the wave table. On each sample
(every 65.25 microseconds), the value in frequency register is added to this position.
As the position runs off the end of the table, it can either truncate (with overflow
enabled) or wrap (overflow disabled).
When overflow is disabled, the frequency is precise but can produce sampling artifacts
as the table wraps at different wave positions on each cycle. When overflow is
enabled, the frequency is quantized, but the output has no sampling artifacts as the
table position is reset to the first sample on each cycle.

Example
// compare overflow methods

GinSingSynth *s = GS.getSynth(); // get synth mode

s->selectBank (BANK_A); // select bank A functions

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer
s->setFrequency (OSC_1 , 1000.0f); // set the tone at 1 kHz
s->setAmplitude (OSC_1 , 1.0f); // set amplitude to 100%

s->enableOverflow (OSC_1 , false); // accurate frequency
delay (5000); // listen for 5 seconds

s->enableOverflow (OSC_1 , true); // eliminate sampling artifacts
delay (5000); // listen for 5 seconds

arguments

dcoSel
The DCO to set the wavetable overflow mode for. The DCO selection is enumerated as the variable
type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected
bank (via selectBank).

enableOVF
A boolean value to enable or disable overflow truncation. When the value is true, aliasing artifact
removal algorithm is enabled; when the value is false frequency accuracy algorithm is enabled.

GinSingSynth.setFrequency

syntax
void setFrequency (GSSynthOsc dcoSel , float freqHz)

description
Sets the frequency for the DCO in Hertz (cycles per second). The frequency can be set
between 0.0009 Hz (1073 seconds) and 7,812.50 Hz (128 microseconds).
Frequencies less than 20 Hz are typically too low to be detected by normal humans
and can used for modulation effects.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // patch DCO 1 to mixer
s->setFrequency (OSC_1 , 100.0f); // set frequency to 100 Hz
s->setAmplitude (OSC_1 , 1.0f); // set amplitude to full volume

arguments

dcoSel
The DCO to set the frequency for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

freqHz
A floating point value that specifies the DCO output frequency in Hz.

GinSingSynth.setFreqVal

syntax
void setFreqVal (GSSynthOsc dcoSel , ulong freqVal)

description
Sets the DCO frequency as an unsigned long integer. The Babblebot IC internally uses a
24-bit frequency counter, so using this function will result in the most accurate
specification of frequency available and avoids the floating point conversion
performed in setFrequency(). Note that to obtain a precise frequency on the DCO the
overflow function should be disabled. To convert from frequency to frequency value,
you can use this equation:

freqVal = (freqHz) * 1073.742487

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->enableOverflow (OSC_1 , false); // enable accurate frequency
s->setFreqVal (OSC_1 , 107374); // set freq precisely to 100 Hz

arguments

dcoSel
The DCO to set the frequency for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

freqVal
An unsigned long integer that represents the output frequency. A value of zero will disable the DCO. A
value value of 1 will set the frequency at its minimum of 0.0009 Hz (1073 seconds), whereas a value
of 8,388,613 will set the frequency at its maximum of 7,812.5 Hz (128 microseconds).

GinSingSynth.setAmplitude

syntax
void setAmplitude (GSSynthOsc dcoSel , float amplitude)

description
Sets the relative output amplitude of the DCO. Amplitude specifies both volume and
phase as a single value because it can be either positive or negative.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setAmplitude (OSC_1 , -0.5f); // 50% volume inverted phase

arguments

dcoSel
The DCO to set the amplitude for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

amplitude
A floating point value that represents the relative output amplitude of the DCO. The amplitude value
can range from -1.0 (full volume inverted phased) to 1.0 (full volume non-inverted phase), with ah
value of 0.0 muting the output.

GinSingSynth.setAmplitudeVal

syntax
void setAmplitudeVal (GSSynthOsc dcoSel , sbyte ampVal)

description
Sets the output amplitude of the DCO as a signed byte. The Babblebot IC internally
uses a signed byte to represent volume, so using this function will avoid the floating
point conversion performed in setAmplitude().

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setAmplitudeVal (OSC_1 , -64); // 50% volume inverted phase

arguments

dcoSel
The DCO to set the amplitude for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

ampVal
A signed byte that represents the output amplitude for the DCO. The value can range from -127 (full
volume inverted phase) to 127 (full volume non-inverted phase), which a value of 0 muting the
output.

GinSingSynth.setFreqDist

syntax
void setFreqDist (GSSynthOsc dcoSel , float distLevel)

description
Sets the relative value of frequency distortion applied to the DCO. Frequency
distortion can be used to change the timbre (tonal quality) of a DCO by randomly
shifting the wavetable step interval on each sample (every 65.25 microseconds). The
effect adds a whistling or windy quality to the sound.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setFreqDist (OSC_1 , 0.2f); // add a 20% whistle effect

arguments

dcoSel
The DCO to set the frequency distortion level for. The DCO selection is enumerated as the variable
type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected
bank (via selectBank).

distLevel
A floating point value that represents the amount of relative frequency distortion to apply to the DCO.
A value of 0.0 will eliminate the effect, whereas a value of 1.0 will add the maximum effect.

GinSingSynth.setFreqDistVal

syntax
void setFreqDistVal (GSSynthOsc dcoSel , ubyte distVal)

description
Sets the relative value of frequency distortion applied to the DCO as an unsigned byte.
The Babblebot IC internally uses an unsigned byte to represent frequency distortion,
so this function avoids the floating point conversion performed in setFreqDist().
Frequency distortion can be used to change the timbre (tonal quality) of a DCO by
randomly shifting the wavetable step interval on each sample (every 65.25
microseconds). The effect adds a whistling or windy quality to the sound.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setFreqDistVal (OSC_1 , -64); // add a 50% whistle effect

arguments

dcoSel
The DCO to set the frequency distortion for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

distVal
An unsigned byte value that represents the amount of relative frequency distortion to apply to the
DCO. A value of 0 will eliminate the effect, whereas a value of 127 will add the maximum effect.

GinSingSynth.setDutyCycle

syntax
void setDutyCycle (GSSynthOsc dcoSel , float dutyCycle)

description
Sets the symmetry of the DCO pulse wave output. This function only has an effect
when the selected waveform is PULSE. A pulse wave is a two stage output that
instantly switches from maximum to minimum once per cycle. The duty cycle specifies
where in the cycle the switch occurs. Changing the duty cycle can vary the frequency
harmonics in the output as well as provide timing variation when the DCO is used as a
modulator.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setDutyCycle (OSC_1 , -0.5); // 25% on , 75% off

arguments

dcoSel
The DCO to set the duty cycle for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

dutyCycle
A floating point value that represents the relative position of where the pulse changes phase in the
cycle. The duty cycle value can vary from -1.0 (all negative phase) to 1.0 (all positive phase). A
value of 0.0 specifies the center of the waveform cycle (square wave).

GinSingSynth.setDutyCycleVal

syntax
void setDutyCycleVal (GSSynthOsc dcoSel , sbyte dcVal)

description
Sets the symmetry of the DCO pulse wave output. This function only has an effect
when the selected waveform is PULSE. The Babblebot IC internally uses a signed byte
to represent duty cycle, so using this function will avoid the floating point conversion
performed in setDutyCycle().
A pulse wave is a two stage output that instantly switches from maximum to minimum
once per cycle. The duty cycle specifies where in the cycle the switch occurs.
Changing the duty cycle can vary the frequency harmonics in the output as well as
provide timing variation when the DCO is used as a modulator.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setDutyCycle (OSC_1 , 0); // set up a square wave

arguments

dcoSel
The DCO to set the duty cycle for. The DCO selection is enumerated as the variable type GSSynthOsc,
and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via
selectBank).

dutyCycle
A signed byte value that represents the relative position of where the pulse changes phase in the
cycle. The duty cycle value can vary from -127(all negative phase) to 127 (all positive phase). A
value of 0 specifies the center of the waveform cycle (square wave).

GinSingSynth.enableFreqTarget

syntax
void enableFreqTarget (GSSynthOsc dcoSel , bool enable)

description
Enables or disables frequency targeting on the DCO. For frequency targeting to
function, frequency ramping must also be enabled (enableFreqRamp()).
Frequency targeting allows the DCO to smoothly ramp from its current frequency to a
specified target frequency at a specified rate. This can be useful for smooth frequency
changes in the DCO, such as portamento.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqTarget (OSC_1 , 1000.0f , // set frequency target 1 kHz
 0.008f); // at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

s->enableFreqTarget(OSC_1 , enable); // enable frequency target

arguments

dcoSel
The DCO to enable or disable frequency targeting for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

enable
A boolean value that enables or disables frequency targeting.

GinSingSynth.setFreqTarget

syntax
void setFreqTarget (GSSynthOsc dcoSel , float freqHz , float relRate)

description
Sets the parameters for frequency targeting. This function will only have an effect if
frequency targeting is enabled (enableFreqTarget). Frequency targeting allows the
DCO to smoothly ramp from its current frequency to the specified target frequency at
the specified relative rate. This can be useful for smooth frequency changes in the
DCO, and can be called continuously to provide pitch bend functionality.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqTarget (OSC_1 , 1000.0f , // set frequency target 1 kHz
 0.008f); // at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

s->enableFreqTarget(OSC_1 , enable); // enable frequency target

arguments

dcoSel
The DCO to set the frequency targeting parameters for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

freqHz
A floating point value that specifies the target frequency in Hz. The frequency can be set between
0.0009 Hz and 7,812.50 Hz, although frequencies less than 20 Hz are typically too low to be detected
by normal humans.

relRate
A floating point value that specifies he relative rate at which the DCO ramps from the current
frequency to the target frequency. Values can range from 0.0 (disables targeting) to 1.0
(instantaneous targeting).

GinSingSynth.setFreqTargetVal

syntax
void setFreqTargetVal (GSSynthOsc dcoSel , uint freqVal , uint rateVal)

description
Sets the parameters for frequency targeting as unsigned integers. The Babblebot IC
internally uses unsigned integers for frequency targeting so using this function will
avoid the floating point conversion performed in setFreqTarget(). This function will
only have an effect if frequency targeting is enabled (enableFreqTarget).
Frequency targeting allows the DCO to smoothly ramp from its current frequency to
the specified target frequency at the specified relative rate. This can be useful for
smooth frequency changes in the DCO, and can be called continuously to provide pitch
bend functionality.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqTarget (OSC_1 , 1000.0f , // set frequency target 1 kHz
 0.008f); // at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

s->enableFreqTarget(OSC_1 , enable); // enable frequency target

arguments

dcoSel
The DCO to set the frequency targeting parameters for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

freqVal
An unsigned two byte integer that represents the target frequency. The frequency can be converted
using the equation: freqVal = (freqHz) * 4.194304547. Values can range from 1 (4.2 Hz) to 32,768
(7,812.50 Hz).

rateVal
The relative rate at which the DCO ramps from the current frequency to the target frequency. Values
can range from 0.0 (disables targeting) to 1.0 (instantaneous targeting). Note that both targeting
and ramping share this rate variable.

GinSingSynth.enableFreqRamp

syntax
void enableFreqRamp (GSSynthOsc dcoSel , bool enable)

description
Enables or disables frequency ramping on the DCO. Frequency ramping allows the DCO
to smoothly ramp from minimum frequency to maximum frequency at a specified rate.
When frequency targeting is enabled as well it will ramp to the target frequency,
otherwise it will free run until disabled.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqRamp (OSC_1 , 0.01f); // ramp at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

arguments

dcoSel
The DCO to enable or disable frequency ramping for. The DCO selection is enumerated as the variable
type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected
bank (via selectBank).

enable
A boolean value that enables or disables frequency ramping.

GinSingSynth.setFreqRamp

syntax
void setFreqRamp (GSSynthOsc dcoSel , float relRate)

description
Sets the relative ramping rate parameter for frequency ramping. This function will
only have an effect if frequency ramping is enabled (enableFreqRamp).Frequency
ramping allows the DCO to smoothly ramp from minimum frequency to maximum
frequency at the specified rate.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqRamp (OSC_1 , 0.01f); // ramp at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

arguments

dcoSel
The DCO to set the frequency ramping rate for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

relRate
A floating point value that specifies he relative rate at which the DCO ramps from the minimum
frequency to the maximum frequency. Values can range from 0.0 (disables ramping) to 1.0
(maximum ramping). Note that both targeting and ramping share this rate variable.

GinSingSynth.setFreqRampVal

syntax
void setFreqRampVal (GSSynthOsc dcoSel , uint rateVal)

description
Sets the relative ramping rate parameter for frequency ramping as an unsigned
integer. The Babblebot IC internally uses an unsigned integer for frequency ramping so
using this function avoids the floating point conversion performed in setFreqRamp().
This function will only have an effect if frequency ramping is enabled
(enableFreqRamp).Frequency ramping allows the DCO to smoothly ramp from
minimum frequency to maximum frequency at the specified rate.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setFrequency (OSC_1 , 100.0f); // set initial frequency 100 Hz
s->setFreqRampVal (OSC_1 , 2); // ramp at a slow rate

s->enableFreqRamp (OSC_1 , true); // enable frequency ramp

arguments

dcoSel
The DCO to set the frequency ramping rate for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

rateVal
An unsigned integer value that specifies he relative rate at which the DCO ramps from the minimum
frequency to the maximum frequency. Values can range from 0 (disables ramping) to 255 (maximum
ramping). Note that both targeting and ramping share this rate variable.

GinSingSynth.enableAmpTarget

syntax
void enableAmpTarget (GSSynthOsc dcoSel , bool enable)

description
Enables or disables amplitude targeting on the DCO.For amplitude targeting to
function, amplitude ramping must also be enabled (enableAmpRamp()).
Amplitude targeting allows the DCO to smoothly ramp from its current amplitude to a
specified target amplitude as a specified rate. This can be useful for smooth
amplitude changes in the DCO.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmplitude (OSC_1 , 0.0f); // set initial amplitude to 0%
s->setAmpTarget (OSC_1 , 1.0f , // set amplitude target to 100%
 0.008f); // at a slow rate

s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

s->enableAmpTarget (OSC_1 , enable); // enable amplitude target

arguments

dcoSel
The DCO to enable or disable amplitude targeting for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

enable
A boolean value that enables or disables amplitude targeting.

GinSingSynth.setAmpTarget

syntax
void setAmpTarget (GSSynthOsc dcoSel , float amp , float relRate)

description
Sets the parameters for amplitude targeting. This function will only have an effect if
amplitude targeting is enabled (enableAmpTarget). Amplitude targeting allows the
DCO to smoothly ramp from its current amplitude to the specified target amplitude at
the specified relative rate. This can be useful for smooth amplitude changes in the
DCO, and can be called continuously to provide amplitude fade functionality.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmplitude (OSC_1 , 0.0f); // set initial amplitude to 0%
s->setAmpTarget (OSC_1 , 1.0f , // set amplitude target to 100%
 0.008f); // at a slow rate

s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

s->enableAmpTarget (OSC_1 , enable); // enable amplitude target

arguments

dcoSel
The DCO to set the amplitude targeting parameters for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

amp
A floating point value that specifies the target amplitude. The amplitude can range from 0.0 (muted)
to 1.0 (full volume).

relRate
A floating point value that specifies he relative rate at which the DCO ramps from the current
amplitude to the target amplitude. Values can range from 0.0 (disables targeting) to 1.0
(instantaneous targeting).

GinSingSynth.setAmpTargetVal

syntax
void setAmpTargetVal (GSSynthOsc dcoSel , sbyte ampVal ,
 uint relRateVal)

description
Sets the parameters for amplitude targeting as unsigned integers. The Babblebot IC
internally uses unsigned integers for amplitude targeting so using this function will
avoid the floating point conversion performed in setAmpTarget(). This function will
only have an effect if amplitude targeting is enabled (enableAmpTarget).
Amplitude targeting allows the DCO to smoothly ramp from its current amplitude to
the specified target amplitude at the specified relative rate. This can be useful for
smooth amplitude changes in the DCO, and can be called continuously to provide
amplitude fade functionality.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmplitude (OSC_1 , 0.0f); // set initial amplitude to 0%
s->setAmpTargetVal (OSC_1 , 127 , // set amplitude target to 100%
 2); // at a slow rate

s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

s->enableAmpTarget (OSC_1 , enable); // enable amplitude target

arguments

dcoSel
The DCO to set the amplitude targeting parameters for. The DCO selection is enumerated as the
variable type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently
selected bank (via selectBank).

ampVal
An signed byte value that represents the target amplitude. The amplitude can range from 0 (muted)
to 127 (full volume).

relRateVal
An unsigned integer that represents the relative targeting rate. The relative rate can range from 0
(targeting disabled) to 32767 (instantaneous targeting). Note that both targeting and ramping share
this rate variable.

GinSingSynth.enableAmpRamp

syntax
void enableAmpRamp (GSSynthOsc dcoSel , bool enable)

description
Enables or disables amplitude ramping on the DCO. Amplitude ramping allows the DCO
to smoothly ramp from minimum amplitude to maximum amplitude at a specified
rate. When amplitude targeting is enabled as well it will ramp to the target
amplitude, otherwise it will free run until disabled.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmpRamp (OSC_1 , 0.08f); // ramp at a slow rate
s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

arguments

dcoSel
The DCO to enable or disable amplitude ramping for. The DCO selection is enumerated as the variable
type GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected
bank (via selectBank).

enable
A boolean value that enables or disables amplitude ramping.

GinSingSynth.setAmpRamp

syntax
void setAmpRamp (GSSynthOsc dcoSel , float relRate)

description
Sets the relative ramping rate parameter for amplitude ramping. This function will
only have an effect if amplitude ramping is enabled (enableAmpRamp). Amplitude
ramping allows the DCO to smoothly ramp from minimum amplitude to maximum
amplitude at the specified rate.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmpRamp (OSC_1 , 0.08f); // ramp at a slow rate
s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

arguments

dcoSel
The DCO to set the amplitude ramping rate for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

relRate
A floating point value that specifies he relative rate at which the DCO ramps from the minimum
amplitude to the maximum amplitude. Values can range from 0.0 (disables ramping) to 1.0
(maximum ramping). Note that both targeting and ramping share this rate variable.

GinSingSynth.setAmpRampVal

syntax
void setAmpRampVal (GSSynthOsc dcoSel , uint relRateVal)

description
Sets the relative ramping rate parameter for amplitude ramping as an unsigned
integer. The Babblebot IC internally uses an unsigned integer for amplitude ramping so
using this function avoids the floating point conversion performed in setAmpRamp().
This function will only have an effect if amplitude ramping is enabled
(enableAmpRamp). Amplitude ramping allows the DCO to smoothly ramp from
minimum amplitude to maximum amplitude at the specified rate.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // send DCO 1 to mixer

s->setAmpRampVal (OSC_1 , 2); // ramp at a slow rate
s->enableAmpRamp (OSC_1 , true); // enable amplitude ramp

arguments

dcoSel
The DCO to set the amplitude ramping rate for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

rateVal
An unsigned integer value that specifies he relative rate at which the DCO ramps from the minimum
amplitude to the maximum amplitude. Values can range from 0 (disables ramping) to 255 (maximum
ramping). Note that both targeting and ramping share this rate variable.

GinSingSynth.trigger

syntax
void trigger (GSSynthOsc dcoSel)

description
Triggers the specified DCO. When this function is called, the DCO will begin executing
its amplitude envelope (ADSR), and will sequence through to its sustain amplitude,
where it will hold the amplitude until release() is called. If this function is called
while the envelope is running it will start the envelope sequence over again.

example

GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // patch DCO 1 to mixer
s->setFrequency (OSC_1 , 100.0f); // set the base tone frequency

s->trigger (OSC_1); // trigger the ADSR
delay (1000); // wait 1 second
s->release (OSC_1); // release the ADSR

arguments

dcoSel
The DCO to trigger. The DCO selection is enumerated as the variable type GSSynthOsc, and can be one
of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via selectBank).

GinSingSynth.release

syntax
void release (GSSynthOsc dcoSel)

description
Releases the DCO. When this function is called, the specified voice will begin
terminating its amplitude envelope (ADSR), and will sequence through to its release
amplitude. If this function is called while the envelope is not active (no triggered), it
will have no effect.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setPatch (OSC_1_TO_MIXER); // patch DCO 1 to mixer
s->setFrequency (OSC_1 , 100.0f); // set the base tone frequency

s->trigger (OSC_1); // trigger the ADSR
delay (1000); // wait 1 second
s->release (OSC_1); // release the ADSR

arguments

dcoSel
The DCO to release. The DCO selection is enumerated as the variable type GSSynthOsc, and can be
one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank (via selectBank).

GinSingSynth.setEnvelope

syntax
void setEnvelope (GSSynthOsc dcoSel ,
 GSAttackDur attackDur , float attackAmp ,
 GSDecRelDur decayDur , float decayAmp ,
 GSDecRelDur releaseDur , float releaseAmp)

description
Sets the amplitude envelope parameters for the DCO. Each DCO has a table that
determines how the output amplitude varies over time once the DCO is triggered. This
table has four sequential stages (Attack, Decay, Sustain, Release) known as an ADSR
envelope, which define amplitude ramps within a time window. The sustain stage is
unique in that its time window is variable based on the time between the completion
of the decay stage until release() is called, and its amplitude is fixed at the decay
stage level; for this reason it does not need to be specified.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setEnvelope (OSC_ALL , AT_1000MS , 0.25f , // 1s attack to 25% vol
 DR_2MS , 0.25f , // 2ms decay to 25% vol
 DR_1500MS , 0.0f); // 1.5s release to 0% vol

arguments

dcoSel
The DCO to set the ADSR envelope for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

attackDur | attackAmp
Attack stage settings. Duration time specified as a variable type GSAttackDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

decayDur | decayAmp
Decay stage settings. Duration time specified as a variable type GSDecRelDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

releaseDur | releaseAmp
Release stage settings. Duration time specified as a variable type GSDecRelDur enumerated in
appendix A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

GinSingSynth.setEnvelopeVal

syntax
void setEnvelopeVal (GSSynthOsc dcoSel ,
 GSAttackDur attackDur , ubyte attackAmpVal ,
 GSDecRelDur decayDur , ubyte decayAmpVal ,
 GSDecRelDur releaseDur , ubyte releaseAmpVal)

description
Sets the amplitude envelope parameters for the DCO as unsigned bytes. The Babblebot
IC internally uses unsigned bytes for ADSR so using this function will avoid floating
point conversion performed using setEnvelope(). Each DCO has a table that determines
how the output amplitude varies over time once the DCO is triggered. This table has
four sequential stages (Attack, Decay, Sustain, Release) known as an ADSR envelope,
which define amplitude ramps within a time window.

example
GinSingSynth *s = GS.getSynth(); // get synth mode

s->setEnvelopeVal(OSC_ALL , AT_1000MS , 127 , // 1s attack to 100% vol
 DR_2MS , 64 , // 2ms decay to 50% vol
 DR_1500MS , 0); // 1.5s release to 0% vol

arguments

dcoSel
The DCO to set the ADSR envelope for. The DCO selection is enumerated as the variable type
GSSynthOsc, and can be one of OSC_1, OSC_2 , or OSC_3, or OSC_ALL on the currently selected bank
(via selectBank).

attackDurVal | attackAmpVal
Attack stage settings. Duration time specified as a variable type GSAttackDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

decayDurVal | decayAmpVal
Decay stage settings. Duration time specified as a variable type GSDecRelDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

releaseDurVal| releaseAmpVal
Release stage settings. Duration time specified as a variable type GSDecRelDur enumerated in
appendix A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

master functions
The master interface controls the “global” aspects of the system, such as overall output
volume, timing functions, and command and control functions. The master functions are
available via the getMaster() method in the base GinSing class an can be called at any time
after the system has been initialized.

state control

enableUserOutput enable or disable the user output (Q)

mixer control

setAmplitude set the bank mixer output amplitude

setAmplitudeVal set the bank mixer amplitude as an integer

setMasterAmplitude set the system output amplitude

setMasterAmplitudeVal set the system amplitude as an integer

targeting & ramping

enableAmpTarget enable or disable amplitude ramp targeting

setAmpTarget set the amplitude ramp target and rate

setAmpTargetVal set the amplitude ramp target and rate as integers

enableAmpRamp enable or disable amplitude ramping

setAmpRamp set the amplitude ramp rate

setAmpRampVal set the amplitude ramp rate as an integer

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

setEnvelopeVal set the amplitude envelope parameters as integers

GingSingMaster.enableUserOutput

syntax
void enableUserOutput (bool enable)

description
Enables or disables the user programmable output on the shield. On the shield, there
are two solder pads labeled “Q” that can be used to power external circuits controlled
by this function. The Q output is a 5 volt 40 mA connection to the Babblebot IC, and
can be useful when adding additional features such as blinking eyes, etc.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->enableUserOutput (true); // turn on Q output
delay (1000); // wait one second

m->enableUserOutput (false); // turn off Q output
delay (1000); // wait one second

arguments

enable
A boolean value that determines the output state of Q on the shield. When the value is true, the Q
output is enabled (5V), when the value is false, the Q output is disabled (0V).

GinSingMaster.setAmplitude

syntax
void setAmplitude (GSMasterMixer mixerIdx , float amplitude)

description
Sets the relative output amplitude of the selected mixer. The two available mixers
correspond to each of the two respective banks, and allow a way to control the
overall bank volume independently. The bank A mixer will scale the output amplitudes
of DCOs A1, A2, and A3, whereas the bank B mixer will scale the output amplitudes of
DCOs B1, B2, and B3.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmplitude (MIX_A , 0.5f); // scale bank A DCO vol by 50%

arguments

mixerIdx
The mixer to set the amplitude for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

amplitude
A floating point value that represents the amplitude for the mixer. The amplitude value can range
from 0.0 (muted) to 1.0 (full volume. Note that DCO output is also scaled by its own amplitude and
the master amplitude as well.

GinSingMaster.setAmplitudeVal

syntax
void setAmplitudeVal (GSMasterMixer mixerIdx , ubyte ampVal)

description
Sets the relative output amplitude of the selected mixer as an unsigned byte. The
Babblebot IC internally uses an unsigned byte to represent volume, so using this
function will avoid the floating point conversion performed in setAmplitude().

example
GinSingMaster *m = GS.getMaster(); // get master interface
m->setAmplitudeVal (MIX_A , 64); // 50% volume on bank A

arguments

mixerIdx
The mixer to set the amplitude for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

ampVal
An unsigned byte that represents the output amplitude for the mixer. The value can range from 0
(muted) to 127 (full volume).

GinSingMaster.setMasterAmplitude

syntax
void setMasterAmplitude (float amplitude)

description
Sets the overall (global) amplitude of the shield. This amplitude is a software
equivalent to a volume control on the shield, and scales the output from the DCOs and
bank mixers by the given value.

example
GinSingMaster *m = GS.getMaster(); // get master interface
m->setMasterAmplitude (0.5f); // set global output to 50%

arguments

amplitude
A floating point value that represents the global amplitude output. The amplitude value can range
from 0.0 (muted) to 1.0 (full volume. Note that DCO output is also scaled by its own amplitude and
the bank amplitude as well.

GinSingMaster.setMasterAmplitudeVal

syntax
void setMasterAmplitudeVal (ubyte ampVal)

description
Sets the overall (global) amplitude of the shield as an unsigned byte. The Babblebot IC
internally uses a unsigned byte to represent volume, so using this function will avoid
the floating point conversion performed in setMasterAmplitude().

example
GinSingMaster *m = GS.getMaster(); // get master interface
m->setMasterAmplitudeVal (64); // set global output to 50%

arguments

ampVal
An unsigned byte that represents the global output amplitude. The value can range from 0 (muted)
to 127 (full volume).

GinSingMaster.enableAmpTarget

syntax
void enableAmpTarget (GSMasterMixer mixerIdx , bool enable)

description
Enables or disables amplitude targeting on the bank output.For amplitude targeting to
function, amplitude ramping must also be enabled (enableAmpRamp()).
Amplitude targeting allows the bank output to smoothly ramp from its current
amplitude to a specified target amplitude as a specified rate. This can be useful for
smooth amplitude changes in the bank output.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmplitude (MIX_ALL , 0.0f); // set initial amplitude to 0%
m->setAmpTarget (MIX_ALL , 1.0f , // set amplitude target to 100%
 0.008f); // at a slow rate

s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

s->enableAmpTarget (MIX_ALL , enable); // enable amplitude target

arguments

mixerIdx
The mixer to control amplitude targeting for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

enable
A boolean value that enables or disables amplitude targeting.

GinSingMaster.setAmpTarget

syntax
void setAmpTarget (GSMasterMixer mixerIdx, float amp, float relRate)

description
Sets the parameters for amplitude targeting on the bank output. This function will
only have an effect if amplitude targeting is enabled (enableAmpTarget). Amplitude
targeting allows the global output to smoothly ramp from its current amplitude to the
specified target amplitude at the specified relative rate. This can be useful for smooth
amplitude changes in the bank output, and can be called continuously to provide
amplitude fade functionality.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmplitude (MIX_ALL , 0.0f); // set initial amplitude to 0%

m->setAmpTarget (MIX_ALL , 1.0f , // set amplitude target to 100%
 0.008f); // at a slow rate

s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

s->enableAmpTarget (MIX_ALL , enable); // enable amplitude target

arguments

mixerIdx
The mixer to set amplitude targeting parameters for. The mixer selection is enumerated as the
variable type GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

amp
A floating point value that specifies the target amplitude. The amplitude can range from 0.0 (muted)
to 1.0 (full volume).

relRate
A floating point value that specifies he relative rate at which the mixer ramps from the current
amplitude to the target amplitude. Values can range from 0.0 (disables targeting) to 1.0
(instantaneous targeting).

GinSingMaster.setAmpTargetVal

syntax
void setAmpTargetVal (GSMasterMixer mixerIdx, ubyte ampVal ,
 uint relRateVal)

description
Sets the parameters for amplitude targeting as unsigned integers. The Babblebot IC
internally uses unsigned integers for amplitude targeting so using this function will
avoid the floating point conversion performed in setAmpTarget(). This function will
only have an effect if amplitude targeting is enabled (enableAmpTarget).

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmplitude (MIX_ALL , 0.0f); // set initial amplitude to 0%

m->setAmpTargetVal (MIX_ALL , 127 , // set amplitude target to 100%
 2); // at a slow rate

s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

s->enableAmpTarget (MIX_ALL , enable); // enable amplitude target

arguments

mixerIdx
The mixer to set the amplitude targeting parameters for. The mixer selection is enumerated as the
variable type GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

ampVal
An signed byte value that represents the target amplitude. The amplitude can range from 0 (muted)
to 127 (full volume).

relRateVal
An unsigned integer that represents the relative targeting rate. The relative rate can range from 0
(targeting disabled) to 32767 (instantaneous targeting). Note that both targeting and ramping share
this rate variable.

GinSingMaster.enableAmpRamp

syntax
void enableAmpRamp (GSMasterMixer mixerIdx , bool enable)

description
Enables or disables amplitude ramping on the bank. Amplitude ramping allows the
bank to smoothly ramp from minimum amplitude to maximum amplitude at a specified
rate. When amplitude targeting is enabled as well it will ramp to the target
amplitude, otherwise it will free run until disabled.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmpRamp (MIX_ALL , 0.08f); // ramp at a slow rate
s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

arguments

mixerIdx
The mixer to control amplitude ramping for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

enable
A boolean value that enables or disables amplitude ramping.

GinSingMaster.setAmpRamp

syntax
void setAmpRamp (GSMasterMixer mixerIdx , float relRate)

description
Sets the relative ramping rate parameter for amplitude ramping. This function will
only have an effect if amplitude ramping is enabled (enableAmpRamp). Amplitude
ramping allows the bank to smoothly ramp from minimum amplitude to maximum
amplitude at the specified rate.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmpRamp (MIX_ALL , 0.08f); // ramp at a slow rate
s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

arguments

mixerIdx
The mixer to set amplitude ramping parameters for. The mixer selection is enumerated as the variable
type GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

relRate
A floating point value that specifies he relative rate at which the bank ramps from the minimum
amplitude to the maximum amplitude. Values can range from 0.0 (disables ramping) to 1.0
(maximum ramping). Note that both targeting and ramping share this rate variable.

GinSingMaster.setAmpRampVal

syntax
void setAmpRampVal (GSMasterMixer mixerIdx , uint relRateVal)

description
Sets the relative ramping rate parameter for amplitude ramping as an unsigned
integer. The Babblebot IC internally uses an unsigned integer for amplitude ramping so
using this function avoids the floating point conversion performed in setAmpRamp().
This function will only have an effect if amplitude ramping is enabled
(enableAmpRamp). Amplitude ramping allows the bank to smoothly ramp from
minimum amplitude to maximum amplitude at the specified rate.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setAmpRampVal (MIX_ALL , 2); // ramp at a slow rate
s->enableAmpRamp (MIX_ALL , true); // enable amplitude ramp

arguments

mixerIdx
The mixer to set amplitude ramping parameters for. The mixer selection is enumerated as the variable
type GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

rateVal
An unsigned integer value that specifies he relative rate at which the bank ramps from the minimum
amplitude to the maximum amplitude. Values can range from 0 (disables ramping) to 255
(maximum ramping). Note that both targeting and ramping share this rate variable.

GinSingMaster.trigger

syntax
void trigger (GSMasterMixer mixerIdx)

description
Triggers the specified bank envelope. When this function is called, the bank mixer will
begin executing its amplitude envelope (ADSR), and will sequence through to its
sustain amplitude, where it will hold the amplitude until release() is called. If this
function is called while the envelope is running it will start the envelope sequence
over again.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->trigger (MIX_A); // trigger ADSR on bank A
delay (1000); // wait one second
m->release (MIX_A); // release ADSR on bank A

arguments

mixerIdx
The mixer to trigger the envelope for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

GinSingMaster.release

syntax
void release (GSMasterMixer mixerIdx)

description
Releases the specified bank envelope. When this function is called, the specified bank
will begin terminating its amplitude envelope (ADSR), and will sequence through to
its release amplitude. If this function is called while the envelope is not active (no
triggered), it will have no effect.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->trigger (MIX_A); // trigger ADSR on bank A
delay (1000); // wait one second
m->release (MIX_A); // release ADSR on bank A

arguments

mixerIdx
The mixer to release the envelope for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

GinSingMaster.setEnvelope

syntax
void setEnvelope (GSMasterMixer mixerIdx ,

 GSAttackDur attackDur , float attackAmp ,
 GSDecRelDur decayDur , float decayAmp ,
 GSDecRelDur releaseDur , float releaseAmp)

description
Sets the amplitude envelope parameters for the bank. Each bank has a table that
determines how the output amplitude varies over time once the bank enveloped is
triggered. This table has four sequential stages (Attack, Decay, Sustain, Release)
known as an ADSR envelope, which define amplitude ramps within a time window. The
sustain stage is unique in that its time window is variable based on the time between
the completion of the decay stage until release() is called, and its amplitude is fixed
at the decay stage level; for this reason it does not need to be specified.

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setEnvelope (MIX_ALL , AT_1000MS , 0.25f , // 1s attack to 25% vol
 DR_2MS , 0.25f , // 2ms decay to 25% vol
 DR_1500MS , 0.0f); // 1.5s release to 0% vol

arguments

mixerIdx
The mixer to set the ADSR parameters for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

attackDur | attackAmp
Attack stage settings. Duration time specified as a variable type GSAttackDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

decayDur | decayAmp
Decay stage settings. Duration time specified as a variable type GSDecRelDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

releaseDur | releaseAmp
Release stage settings. Duration time specified as a variable type GSDecRelDur enumerated in
appendix A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

GinSingMaster.setEnvelopeVal

syntax
void setEnvelopeVal (GSMasterMixer mixerIdx ,

 GSAttackDur attackDur , ubyte attackAmpVal ,
 GSDecRelDur decayDur , ubyte decayAmpVal ,

 GSDecRelDur releaseDur , ubyte releaseAmpVal)

description
Sets the amplitude envelope parameters for the bank mixer as unsigned bytes. The
Babblebot IC internally uses unsigned bytes for ADSR so using this function will avoid
floating point conversion performed using setEnvelope().

example
GinSingMaster *m = GS.getMaster(); // get master interface

m->setEnvelopeVal(MIX_ALL , AT_1000MS , 127 , // 1s attack to 100% vol
 DR_2MS , 64 , // 2ms decay to 50% vol
 DR_1500MS , 0); // 1.5s release to 0% vol

arguments

mixerIdx
The mixer to set the ADSR parameters for. The mixer selection is enumerated as the variable type
GSMasterMixer in appendix A and can be one of MIX_A , MIX_B , or MIX_ALL.

attackDurVal | attackAmpVal
Attack stage settings. Duration time specified as a variable type GSAttackDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

decayDurVal | decayAmpVal
Decay stage settings. Duration time specified as a variable type GSDecRelDur enumerated in appendix
A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

releaseDurVal| releaseAmpVal
Release stage settings. Duration time specified as a variable type GSDecRelDur enumerated in
appendix A. Amplitude specified as a floating point value from 0.0 (mute) to full (1.0).

Appendix A – enumeration types

Primitives

primitive type size (bytes) range

ubyte unsigned char 1 0 to 255

sbyte signed char 1 -127 to 127

uint unsigned int 2 0 to 65,535

ulong unsigned long 4 0 to 4,294,967,296

GSPreset

SpaceWarp Waba RandomThoughts Gong

Pwang Wow Rananana Twarty

Telly Pulsator Bound TipToe

Spokes Chopper Phazer PowerLines

HeavyMetal1 HeavyMetal2 ACMotor YaYa

March NoiseChatter BlipChatter Carney

EarthQuake MindProbe Siren Squaba

SteamLoco FreqMod AmpMod

GSWaveType

SINE sinusoidal (no harmonics)

TRIANGLE linear rise, linear fall (odd harmonics A = 1/n2)

SAWTOOTH instant rise, linear fall (all harmonics A = 1/n)

RAMP linear rise, instant fall (all harmonics A = 1/n)

PULSE instant rise, instant fall (odd harmonics A = 1/n @ 50%)

NOISE random amplitude noise

LEVEL fixed DC offset

GSWaveMode

SYMMETRIC waveform oscillates symmetrically around zero

POSITIVE waveform oscillates from zero to maximum only

GSNote

C_0 CS_0 D_0 DS_0 E_0 F_0 FS_0 G_0 GS_0 A_0 AS_0 B_0

C_1 CS_1 D_1 DS_1 E_1 F_1 FS_1 G_1 GS_1 A_1 AS_1 B_1

C_2 CS_2 D_2 DS_2 E_2 F_2 FS_2 G_2 GS_2 A_2 AS_2 B_2

C_3 CS_3 D_3 DS_3 E_3 F_3 FS_3 G_3 GS_3 A_3 AS_3 B_3

C_4 CS_4 D_4 DS_4 E_4 F_4 FS_4 G_4 GS_4 A_4 AS_4 B_4

C_5 CS_5 D_5 DS_5 E_5 F_5 FS_5 G_5 GS_5 A_5 AS_5 B_5

C_6 CS_6 D_6 DS_6 E_6 F_6 FS_6 G_6 GS_6 A_6 AS_6 B_6

C_7 CS_7 D_7 DS_7 E_7 F_7 FS_7 G_7 GS_7 A_7 AS_7 B_7

GSAllophone

inflections

_SPEEDUP speed up next allophone

_SPEEDDN slow down next allophone

_ VOLUP increase volume on next allophone

_VOLDN decrease volume on next allophone

_PITCHUP increase pitch of next allophone

_PITCHDN decrease pitch of next allophone

_BENDUP bend up pitch of next allophone

_BENDDN bend down pitch of next allophone

phonemes

_A hat, fast, fan

_AA father, fall

_AE gate, ate, ray

_AIR hair, stair, repair

_AU hot, clock, fox

_BE bear, bird, bead

_BO bone, book, brown

_EB cab, crib, web

_OB bob, sub, tub

_CH church, feature, march

_DE deep, date, divide

_DO do, dust, dog

_ED could, bird

_OD bud, food

_E met, check, red

_EE see, even, feed

_ER fir, bird, burn

_F food, effort, off

_GE get, gate, guest

_GO got, glue, god

_HE help, hand, hair

_HO hoe, hot hung

_I sit, fix, pin

_IE mice, fight, white

_J dodge, jet, savage

_KE can't, clown, key

_KO comb, quick, coast

_EK speak, task

_OK nook, took, october

_LE lake, alarm, lapel

_LO clock, plus, hello

_M milk, famous, broom

_NE nip, danger, thin

_NO no, snow, on

_NGE think, ping

_NGO hung, song

_OE go, hello, snow

_OI boy, toy, voice

_OO book, could, should

_OU our, ouch, owl

_OR corn, four, your

_PE people, computer

_PO pow, copy

_R ray, brain, over

_SE see, vest, plus

_SO so, sweat

_SH ship, fiction, leash

_T part, little, sit

_TH thin, month

_THH there, that, this

_TS parts, costs, robots

_U luck, jump, plus

_UE food, june

_V vest, even, twelve

_W wool, sweat

_Y yes, yard, million

_Z zoo, zap

_ZH azure, treasure

_PA0 12 millisecond pause

_PA1 48 millisecond pause

_PA2 62 millisecond pause

_FD0 1 millisecond delay

_FD1 100 millisecond delay

_FD2 600 millisecond delay

terminator

_ENDPHRASE phrase terminator

GSAttackDur

AT_2MS 2 milliseconds AT_100MS 0.1 seconds

AT_8MS 8 milliseconds AT_250MS 0.25 seconds

AT_16MS 16 milliseconds AT_500MS 0.50 seconds

AT_24MS 24 milliseconds AT_800MS 0.8 seconds

AT_38MS 38 milliseconds AT_1000MS 1.0 seconds

AT_56MS 56 milliseconds AT_2800MS 2.8 seconds

AT_68MS 68 milliseconds AT_5600MS 5.6 seconds

AT_80MS 80 milliseconds AT_11200MS 11.2 seconds

GSDecRelDur

DR_2MS 2 milliseconds DR_59MS 59 milliseconds

DR_6MS 6 milliseconds DR_145MS 145 milliseconds

DR_10MS 10 milliseconds DR_292MS 0.292 seconds

DR_15MS 15 milliseconds DR_455MS 0.455 seconds

DR_23MS 23 milliseconds DR_575MS 0.575 seconds

DR_34MS 34 milliseconds DR_1500MS 1.50 seconds

DR_40MS 40 milliseconds DR_2785MS 2.785 seconds

DR_48MS 48 milliseconds DR_4873MS 4.873 seconds

GSSynthOsc

OSC_1 current bank DCO 1 (default base oscillator)

OSC_2 current bank DCO 2 (default amplitude modulator)

OSC_3 current bank DCO 3 (default frequency modulator)

OSC_ALL all oscillators in current bank

GSSynthBank

BANK_A DCO A1, A2, A3, mixer A

BANK_B DCO B1, B2, B3, mixer B

GSSynthPatch

DCO mixer send

OSC_1_TO_MIXER sends DCO 1 to bank mixer

OSC_2_TO_MIXER sends DCO 2 to bank mixer

OSC_3_TO_MIXER sends DCO 3 to bank mixer

DCO amplitude modulation

OSC_2_AMPMOD_OSC_1 amplitude modulate DCO 1 using DCO 2 output

OSC_2_AMPMOD_OSC_1_50PERC reduce amplitude modulation effect by 50%

OSC_2_RINGMOD_OSC_1 ring modulate DCO 1 using DCO 2 output

DCO frequency modulation

OSC_3_FRQMOD_OSC_1 frequency modulate DCO 1 using DCO 3 output

OSC_3_FRQMOD_OSC_1_50PERC reduce frequency modulation effect by 50%

mixer modulation

OSC_B1_AMPMOD_MIXER amplitude modulate mixer using DCO B1 output

OSC_B1_AMPMOD_MIXER_50PERC reduce amplitude modulation effect by 50%

OSC_B1_RINGMOD_MIXER ring modulate bank mixer using DCO B1 output

pulse width modulation

OSC_B1_PWM_OSC_1 pulse width modulate DCO 1 using DCO B1 output

OSC_B2_PWM_OSC_2 pulse width modulate DCO 2 using DCO B2 output

OSC_B3_PWM_OSC_3 pulse width modulate DCO 3 using DCO B3 output

GSMasterMixer

MIX_A bank A mixer

MIX_B bank B mixer

MIX_ALL both mixers

GSCommand

command size / args function

data send & receive

ReadOneByte 1 reg request 1 byte read from register

WriteOneByte 2 reg, val write 1 byte value to register

WriteTwoBytes 3 reg, b1, b2 write 2 byte value to register

WriteThreeBytes 4 reg, b1, b2, b3 write 3 byte value to register

WriteOneByteWithMask 3 reg, val, mask write 1 masked byte to register

speech control

SetVoiceNote 1 note value set speech frequency to note

SetVoiceFrequency 2 freq value set speech frequency to value

SetVoiceDelay 1 delay value set speech delay to value

SetVoiceDefaults 0 set speech values to defaults

TurnQOn 0 set Q output to high state

TurnQOff 0 Set Q output to low state

mixer control

ClearMixersAB 0 clear bank mixer registers

ClearMixerAndOsc_A
ClearMixerAndOsc_B

0 set bank mixer & DCO registers

RampToTargetsAB 0 activate ramp and target options

RampToTargets_A
RampToTargets_B

0 activate bank A ramp and targets

LoadSoundMixer_A
LoadSoundMixer_B

1 preset value load sound preset into registers

DCO control

LoadNoteOsc_A1
LoadNoteOsc_A2
LoadNoteOsc_A3
LoadNoteOsc_B1
LoadNoteOsc_B2
LoadNoteOsc_B3

1 note value set DCO frequency by note value

LoadFreqOsc_A1
LoadFreqOsc_B2
LoadFreqOsc_A3
LoadFreqOsc_B1
LoadFreqOsc_B2
LoadFreqOsc_B3

3 f1, f2, f3 set DCO frequency by value

TriggerOsc_A1
TriggerOsc_A2
TriggerOsc_A3
TriggerOsc_B1
TriggerOsc_B2
TriggerOsc_B3

0 start the DCO amplitude envelop

ReleaseOsc_A1
ReleaseOsc_A2
ReleaseOsc_A3
ReleaseOsc_B1
ReleaseOsc_B2
ReleaseOsc_B3

0 release the DCO amplitude envelope

LoadPlayNoteOsc_A1
LoadPlayNoteOsc_A2
LoadPlayNoteOsc_A3
LoadPlayNoteOsc_B1
LoadPlayNoteOsc_B2
LoadPlayNoteOsc_B3

3 f1, f2, f3 set DCO frequency by value and trigger
amplitude envelop

CmdHeader - Command prefix (internal)

GSRegister

bank

A_MixControl_0
B_MixControl_0

mixer control bits #1

A_MixControl_1
B_MixControl_1

mixer control bits #2

A_Amplitude
B_Amplitude

output amplitude

A_AmplitudeTarget
B_AmplitudeTarget

amplitude target value

A_AmplitudeXLow
A_AmplitudeXHigh
B_AmplitudeXLow
B_AmplitudeXHigh

amplitude ramp rate

A_EnvelopeControl
B_EnvelopeControl

envelope control bits

A_EnvelopeAttack
B_EnvelopeAttack

ADSR attack value

A_EnvelopeDecay
B_EnvelopeDecay

ADSR decay value

A_EnvelopeRelease
B_EnvelopeRelease

ADSR release value

DCO

A_OscDistort_1
A_OscDistort_2
A_OscDistort_3
B_OscDistort_1
B_OscDistort_2
B_OscDistort_3

frequency distortion

A_OscPWM_1
A_OscPWM_2
A_OscPWM_3
B_OscPWM_1
B_OscPWM_2
B_OscPWM_3

pulse width

A1_Control
A2_Control
A3_Control
B1_Control
B2_Control
B3_Control

DCO control bits

A1_FrequencyFine
A1_FrequencyLow
A1_FrequencyHigh

frequency

A2_FrequencyFine
A2_FrequencyLow
A2_FrequencyHigh
A3_FrequencyFine
A3_FrequencyLow
A3_FrequencyHigh
B1_FrequencyFine
B1_FrequencyLow
B1_FrequencyHigh
B2_FrequencyFine
B2_FrequencyLow
B2_FrequencyHigh
B3_FrequencyFine
B3_FrequencyLow
B3_FrequencyHigh

A1_FrequencyTargetLow
A1_FrequencyTargetHigh
A2_FrequencyTargetLow
A2_FrequencyTargetHigh
A3_FrequencyTargetLow
A3_FrequencyTargetHigh
B1_FrequencyTargetLow
B1_FrequencyTargetHigh
B2_FrequencyTargetLow
B2_FrequencyTargetHigh
B3_FrequencyTargetLow
B3_FrequencyTargetHigh

frequency target

A1_FrequencyXLow
A1_FrequencyXHigh
A2_FrequencyXLow
A2_FrequencyXHigh
A3_FrequencyXLow
A3_FrequencyXHigh
B1_FrequencyXLow
B1_FrequencyXHigh
B2_FrequencyXLow
B2_FrequencyXHigh
B3_FrequencyXLow
B3_FrequencyXHigh

frequency ramp rate

A1_Amplitude
A2_Amplitude
A3_Amplitude
B1_Amplitude
B2_Amplitude
A3_Amplitude

output amplitude

A1_AmplitudeTarget
A2_AmplitudeTarget
A3_AmplitudeTarget

amplitude target value

B1_AmplitudeTarget
B2_AmplitudeTarget
B3_AmplitudeTarget

A1_AmplitudeXLow
A1_AmplitudeXHigh
A2_AmplitudeXLow
A2_AmplitudeXHigh
A3_AmplitudeXLow
A3_AmplitudeXHigh
B1_AmplitudeXLow
B1_AmplitudeXHigh
B2_AmplitudeXLow
B2_AmplitudeXHigh
B3_AmplitudeXLow
B3_AmplitudeXHigh

amplitude ramp rate

A1_EnvelopeControl
A2_EnvelopeControl
A3_EnvelopeControl
B1_EnvelopeControl
B2_EnvelopeControl
B3_EnvelopeControl

ADSR control bits

A1_EnvelopeAttack
A2_EnvelopeAttack
A3_EnvelopeAttack
B1_EnvelopeAttack
B2_EnvelopeAttack
B3_EnvelopeAttack

ADSR attack value

A1_EnvelopeDecay
A2_EnvelopeDecay
A3_EnvelopeDecay
B1_EnvelopeDecay
B2_EnvelopeDecay
B3_EnvelopeDecay

ADSR decay value

A1_EnvelopeRelease
A2_EnvelopeRelease
A3_EnvelopeRelease
B1_EnvelopeRelease
B2_EnvelopeRelease
B3_EnvelopeRelease

ADSR release value

speech

SpeechControl speech control bits

SpeechFrequencyLow
SpeechFrequencyHigh

frequency

TransitionSpeed transition speed

PitchBend_A
PitchBend_B

pitch bend rated

miscellaneous

MiscellaneousControl miscellaneous control bits

PortControl port control bits

MasterAmplitude master output amplitude

Output_A1
Output_A2
Output_A3
Output_B1
Output_B2
Output_B3

current output value

