
GinSing
Programming
Guide

version 4.0

copyright 2012 ginsingsound.com

Table of Contents
overview...3

purpose... 3
what is the GinSing library?..3
software models...3
code integration...3
library structure... 4

programming basics..6
bring in the ginsing..6
getting going... 6
code the mode...7
accessorize... 8
what you've learned..8

mode overview.. 9
preset mode..9
poly mode.. 9
voice mode..10
synth mode... 10
master interface... 10
punch-through..11

function overview... 12
base class functions... 12
preset mode functions.. 13
poly mode functions...14
voice mode functions...15
synth mode functions...16
master functions... 18

examples overview..19

getting help..20

overview

purpose

The GinSing software library is a C++ class interface that communicates with the GinSing
Arduino Shield. The purpose of this document is to provide a programming overview of the
interface so you can quickly integrate the GinSing functionality into your applications. In
addition to this document, you can use the GinSing Software Reference guide to find out
more specifics about what the library functions do.

what is the GinSing library?

The GinSing library is a collection of source files written in C++ that integrate into your
Arduino applications through the Arduino Integrated Development Environment (IDE). When
you compile your Arduino application in the IDE, the source code is included in the
compilation process and linked into the executable program that is downloaded onto your
Arduino board.

The library communicates with the GinSing shield using a simple command and register
control communication interface as dictated by the GinSing's processing chip, known as the
Babblebot IC. This low level interface can be called directly if you wish, but the library also
provides high level conceptual software models that organize the functionality of the
Babblebot to make it easier to understand and control the Babblebot based on the type of
uses you may have for it.

software models

The software models in the library each target a specific element of functionality that is
available on the shield. You can switch from one model (or mode) to another quickly and
easily, allowing you to expand functionality as you develop your application. The four
software modes are preset, poly, voice, and synth as outlined in more detail below.

code integration

The library is organized into groups of functions (classes) based on which mode you are
using. Those familiar with the Arduino interface are most likely familiar with this as all of
the Arduino interface functions (for example Serial) are structured in the same way (i.e.
Serial.println()).

Unlike the Arduino, however, this library has a global interface class that you create
explicitly; the Arduino creates its interface classes internally, which means they are always
linked into your application whether you need them or not.

So to get started using the library, you need first to include the library code in your project
and then create the GinSing interface class in your app code. Note that nothing will
happen at this point; you have simply included the library into your application:

#include <GinSing.h> // include the GinSing library
GinSing GS; // create the GinSing interface class

Note that during the installation process the GinSing library files needed for this code to
compile will have been copied into your Arduino sketch folder. You can therefore examine
any of the GinSing source code by looking in that directory. This can be very useful to
understand the inner workings of the library and how you can interact with the low level
functions if you wish.

library structure

Although you may not ever need or want to examine the source code for the library, it is
good to know that you can if you want to find out more about the inner workings. You can
also modify the code as you see fit for your application. The source code is broken int C++
source files (.cpp) and header files (.h) as described here:

GinSing.cpp
GinSing.h

library base class

the GinSing base class. This header file is included in your
application, and is the only one needed, as it includes all of
the other header files inside it.

GinSingDefs.h

constants and definitions

all the constants, enumerations, and variable types that are
used in GinSing are contained in this one file. You can
reference it when writing code that makes calls to the
GinSing library. It is included automatically in GinSing.h

GinSingPreset.cpp
GinSingPreset.h

preset mode

implements the preset operating mode, which allows you
load preconfigured synthesizer settings into memory and play
and/or modify them in realtime.

GinSingPoly.cpp
GinSingPoly.h

poly mode

implements the polyphonic operating mode, which sets up
the system to act as 6 identically configured musical voices.

GinSingVoice.cpp
GinSingVoice.h

voice mode

implements the voice mode, which simulates speech using
built-in phonemes with realtime control over voice
parameters

GinSingSynth.cpp
GinSingSynth.h

synth mode

implements the synthesizer mode, which contains the bulk of
functions in the system for complete control over the sound
generation.

GinSingMaster.cpp
GinSingMaster.h

master functions

implements the non-mode specific functions such as global
volume, command and control, etc.

GinSingSerial.cpp
GinSingSerial.h
GinSingSerialDefs.h

serial interface

implements the low-level serial interface used by the library
to communicate between the Arduino and the GinSing shield.

programming basics

bring in the ginsing

In order to use the GinSing library in your Arduino application, you need only include the
single header file GinSing.h, and create an instance of the C++ interface class from which
you call its functions.

 GinSing uses the C++ class abstraction as a simple way to organize all of its functions in a
convenient manner. If you are new to C++ you can consider the operation of creating
(instancing) the GinSing class as creating a portal to the functions that GinSing offers. In
concrete terms, you need to have the following code as a minimum in your application.

#include <GinSing.h> // include the GinSing library
GinSing GS; // create the GinSing interface class

void setup() // Arduino setup function called on powerup
{
}
void loop() // Arduino loop function called repeatedly
{
}

Note that every Arduino program must define the setup() and loop() functions, and if you
have working code you already have coded these up.

In this example, we have created a static class called GS that we will use to reference the
GinSing library functions. We could have just as easily called it myGinSing, or any other
name you prefer. If all goes well this program won't do anything except compile, but we do
now have access to the GinSing library.

getting going

Lets begin by accessing the initialization function to start up the system. Before any other
calls are made to the library, we must call begin(). This function will initialize the serial
connection to the chip and configure it in a default state. Likewise, when shutting down
the system, we should call end() to quiet the chip and terminate the serial connection.This
is typically done in your setup() function anywhere its appropriate. As this function does
not actually produce any sound it can be placed wherever it is convenient, typically where
you are initializing the rest of your application.

void setup()
{

 #define rcvPin 4 // receiving (can be either 4 or 12)
 #define sndPin 3 // transmitting (can be either 3 or 11)
 #define ovfPin 2 // overflow control (can be either 2 or 10)

 GS.begin(rcvPin , sndPin , ovfPin);
}

Note how we access the base GS class to call the function. This allows the GinSing functions
to exist in their own world (namespace) to avoid conflict with other code. Other base class
functions exist and can be called the same way, as described later on in this document.

The begin() function requires three arguments which correspond
to the hardware setting on the shield. On the board, there are
three jumpers that can each be set to one of two options. These
jumpers physically connect the Arduino to the GinSing shield and
establish what pins on the Arduino will be allocated to support
the communications. More information about what these pins do
can be found in the reference guide. Unless you have need to
modify the pins (due to other shields using the default pins),
you can probably just keep them where they are and use the pin
definitions in this example.

code the mode

The next step is to select the operating mode. The GinSing library operates in one of four
modes, and you can switch from one mode to another mode at will; this allows you for
example to switch from speaking a phrase to playing a musical melody instantly. Note that
you cannot operate two modes simultaneously as each mode configures the hardware in a
unique way (with the exception of punch-through defined later). Lets begin by entering
voice mode, and then have it say something:

void loop()
{

 GSAllophone phrase[] = { _IE , _A , _M ,
 _BENDDN , _J, _I , _NE ,
 _SE , _PITCHDN , _I , _PITCHDN , _NGE ,
 _PA0 , _ENDPHRASE };

 GS.getVoice().begin();
 GS.getVoice().setNote (C_2);
 GS.getVoice().speak (phrase);

 delay (GS.getVoice().getMillis (phrase) + 500);
}

In this example, we have placed the speaking code in the loop() function. By doing this, it

will repeatedly speak over and over as the Arduino calls the loop() function repeatedly. You
could also place this code in the setup() function if you just wanted to speak it once. It is
important to understand the differences between these two functions as you develop your
code.

As you can see above, each mode has its own set of functions within the GinSing class. In
this example, we are using the getVoice() function in the base GS class to get the voice
mode functions, and then make calls to that function. Note that the first function called
when selecting a mode is to call begin(), which sets up the system in a way that lets other
functions in the mode operate properly. What this code does is define a phrase to speak (“I
am GinSing”), starts voice mode, sets the voice frequency to musical note C, speaks the
phrase, and then waits for the phrase to finish before moving on.

accessorize

This method of accessing mode functions is perfectly valid, but you may also opt to store
off the mode functions as its own variable to make it simpler to type. Here is the same
example, but we store off the voice mode functions and reference them from the stored
variable:

void loop()
{
 GingSingVoice *v = GS.getVoice();

GSAllophone phrase[] = { _IE , _A , _M ,
 _BENDDN , _J, _I , _NE ,
 _SE , _PITCHDN , _I , _PITCHDN , _NGE ,
 _PA0 , _ENDPHRASE };

 v->begin();
 v->setNote (C_2);
 v->speak (phrase);

 delay (v->getMillis (phrase) + 500);
}

This is a more compact way to access the mode, and can be done for any of the other
modes; you just need to store off the mode class in your code in a variable that is
accessible when you need it. In this example the variable v stores off the voice mode
interface that we can use at any time once we have retrieved it form the base class.

We have purposely not discussed the functionality of this code; the idea here is to grok
how you will be writing your application to call the GinSing functions in general.

what you've learned

To review:

1. include the GinSing header file outside of any code blocks

2. instance the base GinSing class in your startup code

3. get the operating mode interface class from the base class

4. call the begin() method when first starting or switching a mode

5. call functions in the mode interface that you want to use

mode overview
There are four functional modes in the library – preset mode, poly mode, voice mode, and
synth mode; each targeting a different type of application. You can quickly and easily
switch between modes, allowing you to develop features as you learn more about how the
library works.

Each of the modes has its own set of functions that reflects its primary purpose. For this
reason this reference is organized by mode. Some modes have functions with the same
name (for example trigger()) and although may perform a similar function may require
different arguments.

preset mode

Preset mode is the simplest of the four modes
and has the simplest interface functions. In
preset mode, you can trigger on-board preset
configurations of the system to play sound
effects. Up to two presets can be loaded and
triggered at a given time (one for each of the
two banks). Preset mode is a good place to start
when adding sound to your application because it
requires minimal code and knowledge about how
the system works; it will get you up and running
with sounds in a very short time.

poly mode

Poly mode (or polyphonic mode) configures the
system to operate as a six channel musical
instrument. Each channel (or voice) operates
independently allowing up to 6 simultaneous
tones to be produced. This mode is a
simplification of synth mode in that all the voices
are configured identically and sent directly to
the output, and allows for parameter changes to
occur on all six voices using the same function
call (i.e. change waveform type).

voice mode

Voice mode can be used to produce artificial
speech. When voice mode is activated, all
resources in the system are used internally for
the purpose of generating human (or otherwise)
voice synthesis. The interface provides the
ability to string together basic speech fragments
(called allophones) into phrases as well as
control the tonal qualities of the synthesis. Voice
mode provides a very simple way to add artificial
voice to your Arduino project.

synth mode

Synth mode can be used to directly control all
aspects of complex waveform synthesis on the
Babblebot. The system is configured into 2 banks
of 3 digitally controlled oscillators (DCOs) that
are patched in such as way as to allow DCOs to
modulate each other creating complex waveform
patterns and tonal qualities. Synth mode
operates in much the same way as analog
synthesizers do, but does so with complete
digital control. It is the most complicated
interface, but also has the most user
functionality.

master interface

In common with all of the above modes is a common master interface that is available
regardless of what mode you are currently in. The master interface controls the global
aspects of the system, such as overall output volume, timing functions, and command and
control functions. The master functions are available via the getMaster() method in the
base GinSing class an can be called at any time after the system has been initialized.

punch-through

One thing to note about the operating modes that they vary in complexity, with synth mode
being the most complex by far. This is important because the other modes (preset, voice,
and poly) are just simplifications to synth mode; they set up the system in such as way to
provide a simpler conceptual interface for the task at hand.

For example, poly mode configures the synthesizer's six DCOs with the same waveform,
envelopes, and other parameters so that it looks to you like a six voice polyphonic tone
generator, but is actually only making calls to synth mode internally.

By taking advantage of this relationship of the other modes to synth mode, you can enhance
any of the other modes by calling synth mode functions while not actually in synth mode.
This act of reaching into synth mode is called “punch-through” because you can punch
directly into the synth mode functions without having to switch modes.

As an example of why you might want to do this, let's consider the simplest mode – preset
mode. When you enter preset mode and trigger a preset, there appears not much more to
do, but in fact you can start making synth mode calls after you trigger the preset to change
all of its operating parameters, such as pitch of the modulation DCOs etc. Although we don't
want to bog you down too much with the details, we encourage to you experiment with
punch-through once you get your app up and running.

function overview
Hopefully the concepts presented so far have given you an understanding on how to
syntactically write code for GinSing, and give you an idea on what generally the system can
do. This section provides an overview of the functions that are available in each of the
classes in the system with a brief description to help guide you through the planning of your
project. For a complete description of the functions, arguments, and features please refer
to the reference manual.

base class functions

The base class functions provide the ability to initialize the system and gain access other
sections of the interface. It also provides for the low level command interface used
internally. This class (GingSing) must be explicitly created in your application with any
variable name you prefer; this document assumes the name “GS”.

state control

begin connect and initialize GinSing shield

end mute and disconnect GinSing shield

reset reset GinSing shield to power up state

isReady test if communication link is available

getVersion get the version of this library

subclass accessors

getPoly get the poly mode interface

getVoice get the voice mode interface

getPreset get the preset mode interface

getSynth get the synth mode interface

getMaster get the master interface

command & register control

sendCommand send a command to the Babblebot IC

writeRegister write to a Babblebot IC register

readRegister read from a Babblebot IC register

preset mode functions

Preset mode is the simplest of the four modes and has the simplest interface functions. In
preset mode, you can trigger on-board preset configurations of the system to play sound
effects. Up to two presets can be loaded and triggered at a given time (one for each of the
two banks). Preset mode is a good place to start when adding sound to your application
because it requires minimal code and knowledge about how the system works; it will get
you up and running with sounds in a very short time.

The presets stored on the Babblebot IC are simply predefined register sets that are copied
into the registers when loaded. Once loaded, you can optionally modify the registers using
the synth mode functions; this allows you to form base effects that you can customize and
modify in real-time.

Preset mode functions are accessed via the GinSingPreset class obtained through the base
class getPreset() function.

state control

begin configure system for preset mode

preview play preset mode demo

envelope control

load load a preset from built-in memory

trigger trigger the amplitude envelope

release release the amplitude envelope

setAmplitude set the amplitude

poly mode functions

Poly mode (or polyphonic mode) configures the system to operate as a six channel musical
instrument. Each channel (or voice) operates independently allowing up to 6 simultaneous
tones to be produced. This mode is a simplification of synth mode in that all the voices are
configured identically and allows for parameter changes to occur on all six voices using the
same function call (i.e. change waveform type).

Poly mode is essentially a simplification of synth mode in that it configures all six digitally
controlled oscillators (DCOs) identically with no modulation, and patches them to directly
to the output mixers. For complete customization of voices you punch-through to the synth
mode functions.

Poly mode functions are accessed via the GinSingPoly class obtained through the base class
getPoly() function.

state control

begin configure system for poly mode

preview play poly mode demo

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

DCO parameters

setNote set the frequency as a musical note

setWaveform set the waveform type

setFreqDist set the frequency distortion level

setDutyCycle set the duty cycle for pulse wave

voice mode functions

Voice mode can be used to produce artificial speech. When voice mode is activated, all
resources in the system are used internally for the purpose of generating human (or
otherwise) voice synthesis. The interface provides the ability to string together basic
speech fragments (called phonemes) into phrases as well as control the tonal qualities of
the synthesis. Voice mode provides a very simple way to add artificial voice to your Arduino
project.

Voice mode is in essence a set of built-in register configurations (one per allophone) that
are loaded into the registers when an allophone is processed, and blended as the
allophones change. Due to the complex nature of patching, mixing, and modulation to
model each allophone there are limited but interesting uses of punch-through to synth
mode.

Voice mode functions are accessed via the GinSingVoice class obtained through the base
class getVoice() function.

state control

begin configure system for voice mode

preview play voice mode demo

voice mode control

speak speak a phrase

getMillis compute phrase duration

voice mode parameters

setNote set the speech frequency as a musical note

setFrequency set the speech frequency for speech

setBlendSpeed set the relative blending speed between phonemes

setDelay set the relative delay between phonemes

synth mode functions

Synth mode can be used to directly control all aspects of complex waveform synthesis on
the Babblebot. The system is configured into 2 banks of 3 digitally controlled oscillators
(DCOs) that are patched in such as way as to allow one DCO to modulate others (i.e.
amplitude, frequency, pulse width), creating complex waveform patterns and tonal
qualities. Synth operates in much the same way as analog synthesizers do, but does so with
complete digital control.

Synth mode functions are accessed via the GinSingSynth class obtained through the base
class getSynth() function.

state control

begin configure system for synth mode

preview play synth mode demo

bank & patch

selectBank select the current bank

setPatch specify the DCO patch routing

DCO parameters

setWaveform set the waveform type

setWavemode set the waveform mode

setNote set the frequency as a musical note

enableOverflow enable or disable wavetable overflow handling

setFrequency set the frequency in Hz

setFreqVal set the frequency as an integer

setAmplitude set the output amplitude

setAmplitudeVal set the amplitude as an integer

setFreqDist set the frequency distortion level

setFreqDistVal set the frequency distortion as an integer

setDutyCycle set the duty cycle for pulse wave

setDutyCycleVal set the duty cycle for pulse wave as an integer

targeting & ramping

enableFreqTarget enable or disable frequency ramp targeting

setFreqTarget set the frequency ramp target and rate

setFreqTargetVal set the frequency ramp and target as integers

enableFreqRamp enable or disable frequency ramping

setFreqRamp set the frequency ramp rate

setFreqRampVal set the frequency ramp rate as an integer

enableAmpTarget enable or disable amplitude ramp targeting

setAmpTarget set the amplitude ramp target and rate

setAmpTargetVal set the amplitude ramp target and rate as integers

enableAmpRamp enable or disable amplitude ramping

setAmpRamp set the amplitude ramp rate

setAmpRampVal set the amplitude ramp rate as an integer

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

setEnvelopeVal set the amplitude envelope parameters as integers

master functions

The master interface controls the “global” aspects of the system, such as overall output
volume, timing functions, and command and control functions. The master functions are
available via the getMaster() method in the base GinSing class an can be called at any time
after the system has been initialized.

state control

enableUserOutput enable or disable the user output (Q)

mixer control

setAmplitude set the bank mixer output amplitude

setAmplitudeVal set the bank mixer amplitude as an integer

setMasterAmplitude set the system output amplitude

setMasterAmplitudeVal set the system amplitude as an integer

targeting & ramping

enableAmpTarget enable or disable amplitude ramp targeting

setAmpTarget set the amplitude ramp target and rate

setAmpTargetVal set the amplitude ramp target and rate as integers

enableAmpRamp enable or disable amplitude ramping

setAmpRamp set the amplitude ramp rate

setAmpRampVal set the amplitude ramp rate as an integer

envelope control

trigger trigger the amplitude envelope

release release the amplitude envelope

setEnvelope set the amplitude envelope parameters

setEnvelopeVal set the amplitude envelope parameters as integers

examples overview
In the hopes of getting you up and running ASAP, we have created 5 specific source code
examples that will guide you through the rest of the programming within the Arduino IDE
itself. The idea here is that you can learn, copy, alter, and mix & match code from these
examples in the environment that you code from. For this reason, we'll go through a
general idea of these sample programs and let you experiment with working code in the
IDE. The example programs can be found in your Arduino/GinSing folder, and are directly
loadable in the Arduino IDE via the File -> Sketchbook -> GinSing menu option.

1.welcome

this program illustrates the basic concept of how to get the GinSing
functionality into your own code. It does 4 iterations that go through the
basic operating modes of the software in order (poly , preset , voice ,
synth) and run a built-in preview of each mode. of most importance is the
understanding of how the C++ class is created, what header file you
need, and how to access the methods (functions) in each mode.

2.presetmode

this program demonstrates the basics of preset sound effects mode. the
chip contains 30+ built-in sound effects that are easy to trigger and fun to
use. it illustrates how to access the preset class methods to cycle through
all of the available preset sound effects and play them in order. It also
demonstrates the concept of load, trigger, and release methods and
utilizes only one of the two available banks for playing effects.

3.polymode

this program demonstrates the basics of polyphonic mode. In poly mode,
the system is configured to create 6 identical voices that can be triggered
simultaneously. in this example we create a simple note sequence and
play using the musical scale in 3 part harmony. It demonstrates the basics
of how to use GinSing as the basis for simple musical instruments.

4.voicemode

this program demonstrates the basics of voice synthesis mode. In voice
mode, all resources in the chip are allocated to perform synthetic speech.
this example contains several small routines that demonstrate how to
create simple phrases and how to control pitch, inflection, and speed.

5. synthmode

this program demonstrates the basics of waveform synthesis mode. In
synth mode, each of the 6 waveform generators can be patched in unique
ways such as mixing and modulation to create complex waveforms. this
example demonstrates some of the basic techniques used in waveform
synthesis such as amplitude modulation, frequency modulation, frequency
distortion, and more.

getting help
We hope that between this document, the source examples, and the reference manual you
should be able to get all of the functionality you want from the GinSing library. However,
you may come across some sort of weirdness or otherwise troubling behavior that is not
explainable through documentation alone. If this happens, consider yourself among the
ranks of a full-fledged programmer; welcome to the club!

To help you get through any problems, we have created a support forum on our website
that you can use to post questions about troubles or issues you are having, or just to get
more information from others that have gone down the path you are taking. We encourage
you to check out the forum and participate in the discussion; you only need to register on
the site to begin posting questions and getting answers. We welcome comments,
suggestions, rants, raves and ideas about all things GinSing; and appreciate your input and
letting us know what projects you are using GinSing for.

So please consider the support forum as your conduit to help you get through any troubles
you have when using GinSing; we hope to hear from you soon!

http://www.ginsingsound.com/support

